Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
MAGMA ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822992

RESUMO

OBJECTIVES: To assess the feasibility of sodium-23 MRI for performing quantitative and non-invasive measurements of total sodium concentration (TSC) and relaxation in a variety of abdominal organs. MATERIALS AND METHODS: Proton and sodium imaging of the abdomen was performed in 19 healthy volunteers using a 3D cones sequence and a sodium-tuned 4-rung transmit/receive body coil on a clinical 3 T system. The effects of B1 non-uniformity on TSC measurements were corrected using the double-angle method. The long-component of 23Na T2* relaxation time was measured using a series of variable echo-times. RESULTS: The mean and standard deviation of TSC and long-component 23Na T2* values were calculated across the healthy volunteer group in the kidneys, cerebrospinal fluid (CSF), liver, gallbladder, spleen, aorta, and inferior vena cava. DISCUSSION: Mean TSC values in the kidneys, liver, and spleen were similar to those reported using 23Na-MRI previously in the literature. Measurements in the CSF and gallbladder were lower, potentially due to the reduced spatial resolution achievable in a clinically acceptable scan time. Mean long-component 23Na T2* values were consistent with previous reports from the kidneys and CSF. Intra-population standard error was larger in smaller, fluid-filled structures due to fluid motion and partial volume effects.

2.
Br J Radiol ; 97(1158): 1118-1124, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38711198

RESUMO

OBJECTIVES: To assess how radiomic features may be combined with plaque morphological and compositional features identified by multi-contrast MRI to improve upon conventional risk assessment models in determining culprit carotid artery lesions. METHODS: Fifty-five patients (mean age: 62.6; 35 males) with bilateral carotid stenosis who experienced transient ischaemic attack (TIA) or stroke were included from the CARE-II multi-centre carotid imaging trial (ClinicalTrials.gov Identifier: NCT02017756). They underwent MRI within 2 weeks of the event. Classification capability in distinguishing culprit lesions was assessed by machine learning. Repeatability and reproducibility of the results were investigated by assessing the robustness of the radiomic features. RESULTS: Radiomics combined with a relatively conventional plaque morphological and compositional metric-based model provided incremental value over a conventional model alone (area under curve [AUC], 0.819 ± 0.002 vs 0.689 ± 0.019, respectively, P = .014). The radiomic model alone also provided value over the conventional model (AUC, 0.805 ± 0.003 vs 0.689 ± 0.019, respectively, P = .031). T2-weighted imaging-based radiomic features had consistently higher robustness and classification capabilities compared with T1-weighted images. Higher-dimensional radiomic features outperformed first-order features. Grey Level Co-occurrence Matrix, Grey Level Dependence Matrix, and Grey Level Size Zone Matrix sub-types were particularly useful in identifying textures which could detect vulnerable lesions. CONCLUSIONS: The combination of MRI-based radiomic features and lesion morphological and compositional parameters provided added value to the reference-standard risk assessment for carotid atherosclerosis. This may improve future risk stratification for individuals at risk of major adverse ischaemic cerebrovascular events. ADVANCES IN KNOWLEDGE: The clinical relevance of this work is that it addresses the need for a more comprehensive method of risk assessment for patients at risk of ischaemic stroke, beyond conventional stenosis measurement. This paper shows that in the case of carotid stroke, high-dimensional radiomics features can improve classification capabilities compared with stenosis measurement alone.


Assuntos
Estenose das Carótidas , Imageamento por Ressonância Magnética , Placa Aterosclerótica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estenose das Carótidas/diagnóstico por imagem , Placa Aterosclerótica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Medição de Risco , Idoso , Ataque Isquêmico Transitório/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Aprendizado de Máquina , Radiômica
3.
Alzheimers Dement ; 20(6): 3852-3863, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629936

RESUMO

INTRODUCTION: Cerebral small vessel disease (SVD) is a common cause of stroke/vascular dementia with few effective treatments. Neuroinflammation and increased blood-brain barrier (BBB) permeability may influence pathogenesis. In rodent models, minocycline reduced inflammation/BBB permeability. We determined whether minocycline had a similar effect in patients with SVD. METHODS: MINERVA was a single-center, phase II, randomized, double-blind, placebo-controlled trial. Forty-four participants with moderate-to-severe SVD took minocycline or placebo for 3 months. Co-primary outcomes were microglial signal (determined using 11C-PK11195 positron emission tomography) and BBB permeability (using dynamic contrast-enhanced MRI). RESULTS: Forty-four participants were recruited between September 2019 and June 2022. Minocycline had no effect on 11C-PK11195 binding (relative risk [RR] 1.01, 95% confidence interval [CI] 0.98-1.04), or BBB permeability (RR 0.97, 95% CI 0.91-1.03). Serum inflammatory markers were not affected. DISCUSSION: 11C-PK11195 binding and increased BBB permeability are present in SVD; minocycline did not reduce either process. Whether these pathophysiological mechanisms are disease-causing remains unclear. INTERNATIONAL CLINICAL TRIALS REGISTRY PORTAL IDENTIFIER: ISRCTN15483452 HIGHLIGHTS: We found focal areas of increased microglial signal and increased blood-brain barrier permeability in patients with small vessel disease. Minocycline treatment was not associated with a change in these processes measured using advanced neuroimaging. Blood-brain barrier permeability was dynamic but MRI-derived measurements correlated well with CSF/serum albumin ratio. Advanced neuroimaging is a feasible outcome measure for mechanistic clinical trials.


Assuntos
Barreira Hematoencefálica , Doenças de Pequenos Vasos Cerebrais , Minociclina , Tomografia por Emissão de Pósitrons , Humanos , Minociclina/farmacologia , Doenças de Pequenos Vasos Cerebrais/tratamento farmacológico , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Masculino , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Método Duplo-Cego , Feminino , Idoso , Imageamento por Ressonância Magnética , Inflamação/tratamento farmacológico , Pessoa de Meia-Idade
4.
J Neurotrauma ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38468502

RESUMO

Cerebral microdialysis (CMD) catheters allow continuous monitoring of patients' cerebral metabolism in severe traumatic brain injury (TBI). The catheters consist of a terminal semi-permeable membrane that is inserted into the brain's interstitium to allow perfusion fluid to equalize with the surrounding cerebral extracellular environment before being recovered through a central non-porous channel. However, it is unclear how far recovered fluid and suspended metabolites have diffused from within the brain, and therefore what volume or region of brain tissue the analyses of metabolism represent. We assessed diffusion of the small magnetic resonance (MR)-detectible molecule gadobutrol from microdialysis catheters in six subjects (complete data five subjects, incomplete data one subject) who had sustained a severe TBI. Diffusion pattern and distance in cerebral white matter were assessed using T1 (time for MR spin-lattice relaxation) maps at 1 mm isotropic resolution in a 3 Tesla MR scanner. Gadobutrol at 10 mmol/L diffused from cerebral microdialysis catheters in a uniform spheroidal (ellipsoid of revolution) pattern around the catheters' semipermeable membranes, and across gray matter-white matter boundaries. Evidence of gadobutrol diffusion was found up to a mean of 13.4 ± 0.5 mm (mean ± standard deviation [SD]) from catheters, but with a steep concentration drop off so that ≤50% of maximum concentration was achieved at ∼4 mm, and ≤10% of maximum was found beyond ∼7 mm from the catheters. There was little variation between subjects. The relaxivity of gadobutrol in human cerebral white matter was estimated to be 1.61 ± 0.38 L.mmol-1sec-1 (mean ± SD); assuming gadobutrol remained extracellular thereby occupying 20% of total tissue volume (interstitium), and concentration equilibrium with perfusion fluid was achieved immediately adjacent to catheters after 24 h of perfusion. No statistically significant change was found in the concentration of the extracellular metabolites glucose, lactate, pyruvate, nor the lactate/pyruvate ratio during gadobutrol perfusion when compared with period of baseline microdialysis perfusion. Cerebral microdialysis allows continuous monitoring of regional cerebral metabolism-the volume of which is now clearer from this study. It also has the potential to deliver small molecule therapies to focal pathologies of the human brain. This study provides a platform for future development of new catheters optimally designed to treat such conditions.

6.
BMJ ; 383: e077164, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38128958

RESUMO

OBJECTIVE: To investigate the behaviour of common healthcare related objects in a 3 tesla (T) MRI (magnetic resonance imaging) scanner, examining their ability to self-propel towards the scanner bore and their potential for tissue penetration. DESIGN: Prospective in situ experimental study. SETTING: Clinical 3 T MRI scanner. Customised rig designed and built to guide objects towards the scanner bore. PARTICIPANTS: 12 categories of objects commonly found in hospitals, or on patients or healthcare professionals, or near an MRI scanning room. Human tissue penetration simulated with ballistic gel (Federal Bureau of Investigation and North Atlantic Treaty Organisation graded). MAIN OUTCOME MEASURES: SANTA (site where applied newtonian mechanics triggers acceleration) measurements and depth of tissue penetration of the objects. RESULTS: SANTA measurements ranged from 0 cm for the 20 pence, 50 pence, and £2 coins to 152-161 cm for a knife and the biscuit tins. One penny, two pence, five pence, and 10 pence coins showed self-propulsion and acceleration towards the scanner bore at a distance >100 cm from the gantry entry point. Linear regression analysis showed no apparent correlation between the weight of the objects and their SANTA measurements (R2<0.1). Only five objects penetrated the ballistic gel (simulated human tissue). The deepest penetration was by the knife (5.5 cm), closely followed by the teaspoon (5.0 cm), fork (4.0 cm), spoon (3.5 cm), and a 10 pence coin (0.5 cm). Although the biscuit tins did not penetrate the simulated human tissue, they exerted substantial impact force which could potentially cause bone fractures. A smartphone, digital thermometer, metallic credit card, and pen torch remained fully functional after several passes into the MRI scanner. No discernible loss of image quality for the MRI scanner after the experiments was found. CONCLUSIONS: The study highlights the potential for harm (major tissue damage and bone fractures) when commonly found objects in a healthcare setting are unintentionally brought into the MRI scanner room. Patients and healthcare professionals need to be aware of the dangers associated with bringing ferromagnetic objects into the MRI environment.


Assuntos
Fraturas Ósseas , Instalações de Saúde , Humanos , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Atenção à Saúde
7.
Diagnostics (Basel) ; 13(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37685352

RESUMO

Artificial intelligence (AI) methods applied to healthcare problems have shown enormous potential to alleviate the burden of health services worldwide and to improve the accuracy and reproducibility of predictions. In particular, developments in computer vision are creating a paradigm shift in the analysis of radiological images, where AI tools are already capable of automatically detecting and precisely delineating tumours. However, such tools are generally developed in technical departments that continue to be siloed from where the real benefit would be achieved with their usage. Significant effort still needs to be made to make these advancements available, first in academic clinical research and ultimately in the clinical setting. In this paper, we demonstrate a prototype pipeline based entirely on open-source software and free of cost to bridge this gap, simplifying the integration of tools and models developed within the AI community into the clinical research setting, ensuring an accessible platform with visualisation applications that allow end-users such as radiologists to view and interact with the outcome of these AI tools.

8.
Eur J Radiol ; 166: 111017, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541181

RESUMO

PURPOSE: To evaluate the impact of a commercially available deep learning-based reconstruction (DLR) algorithm with varying combinations of DLR noise reduction settings and imaging parameters on quantitative and qualitative image quality, PI-RADS classification and examination time in prostate T2-weighted (T2WI) and diffusion-weighted (DWI) imaging. METHOD: Forty patients were included. Standard-of-care (SoC) prostate MRI sequences including T2WI and DWI were reconstructed without and with different DLR de-noising levels (low, medium, high). In addition, faster T2WI(Fast) and DWI(Fast) sequences, and a higher resolution T2WI(HR) sequence were evaluated. Quantitative analysis included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and apparent diffusion coefficient (ADC) values. Two radiologists performed qualitative analysis, independently evaluating imaging datasets using 5-point scoring scales for image quality and artifacts. PI-RADS category assignment was also performed by the more experienced radiologist. RESULTS: All DLR levels resulted in significantly higher SNR and CNR compared to the DLR(off) acquisitions. DLR allowed the acquisition time to be reduced by 33% for T2WI(Fast) and 49% for DWI(Fast) compared to SoC, without affecting image quality, whilst T2WI(HR) with DLR allowed for a 73% increase in spatial resolution in the phase encode direction compared to SoC. The inter-reader agreement for image quality and artifact scores was substantial for all subjective measurements on T2WI and DWI. The T2WI(Fast) protocol with DLR(medium) and DWI(Fast) with DLR(low) received the highest qualitative quality score. CONCLUSION: DLR can reduce T2WI and DWI acquisition time and increase SNR and CNR without compromising image quality or altering PI-RADS classification.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos
9.
Eur Radiol ; 33(9): 6168-6178, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37166494

RESUMO

OBJECTIVES: To explore the relationship between indices of hypoxia and vascular function from 18F-fluoromisonidazole ([18F]-FMISO)-PET/MRI with immunohistochemical markers of hypoxia and vascularity in oestrogen receptor-positive (ER +) breast cancer. METHODS: Women aged > 18 years with biopsy-confirmed, treatment-naïve primary ER + breast cancer underwent [18F]-FMISO-PET/MRI prior to surgery. Parameters of vascular function were derived from DCE-MRI using the extended Tofts model, whilst hypoxia was assessed using the [18F]-FMISO influx rate constant, Ki. Histological tumour sections were stained with CD31, hypoxia-inducible factor (HIF)-1α, and carbonic anhydrase IX (CAIX). The number of tumour microvessels, median vessel diameter, and microvessel density (MVD) were obtained from CD31 immunohistochemistry. HIF-1α and CAIX expression were assessed using histoscores obtained by multiplying the percentage of positive cells stained by the staining intensity. Regression analysis was used to study associations between imaging and immunohistochemistry variables. RESULTS: Of the lesions examined, 14/22 (64%) were ductal cancers, grade 2 or 3 (19/22; 86%), with 17/22 (77%) HER2-negative. [18F]-FMISO Ki associated negatively with vessel diameter (p = 0.03), MVD (p = 0.02), and CAIX expression (p = 0.002), whilst no significant relationships were found between DCE-MRI pharmacokinetic parameters and immunohistochemical variables. HIF-1α did not significantly associate with any PET/MR imaging indices. CONCLUSION: Hypoxia measured by [18F]-FMISO-PET was associated with increased CAIX expression, low MVD, and smaller vessel diameters in ER + breast cancer, further corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. KEY POINTS: • Hypoxia, measured by [18F]-FMISO-PET, was associated with low microvessel density and small vessel diameters, corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. • Increased CAIX expression was associated with higher levels of hypoxia measured by [18F]-FMISO-PET. • Morphologic and functional abnormalities of the tumour microvasculature are the major determinants of hypoxia in cancers and support the previously reported perfusion-driven character of hypoxia in breast carcinomas.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Imuno-Histoquímica , Hipóxia , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Subunidade alfa do Fator 1 Induzível por Hipóxia
10.
Br J Radiol ; 96(1147): 20220976, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191274

RESUMO

OBJECTIVES: Dynamic contrast-enhanced MR images can be analyzed through the application of a wide range of kinetic models. This process is prone to variability and a lack of standardization that can affect the measured metrics. There is a need for customized digital reference objects (DROs) for the validation of DCE-MRI software packages that undertake kinetic model analysis. DROs are currently available only for a small subset of the kinetic models commonly applied to DCE-MRI data. This work aimed to address this gap. METHODS: Code was written in the MATLAB programming environment to generate customizable DROs. This modular code allows the insertion of a plug-in to describe the kinetic model to be tested. We input our generated DROs into three commercial and open-source analysis packages and assessed the agreement of kinetic model parameter values output with the 'ground-truth' values used in the DRO generation. RESULTS: For the five kinetic models tested, the concordance correlation coefficient values were >98%, indicating excellent agreement of the results with 'ground-truth'. CONCLUSIONS: Testing our DROs on three independent software packages produced concordant results, strongly suggesting our DRO generation code is correct. This implies that our DROs can be used to validate other third party software for the kinetic model analysis of DCE-MRI data. ADVANCES IN KNOWLEDGE: This work extends published work of others to allow customized generation of test objects for any applied kinetic model and allows the incorporation of B1 mapping into the DRO for application at higher field strengths.


Assuntos
Meios de Contraste , Validação de Programas de Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Software
12.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36697134

RESUMO

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Assuntos
Aterosclerose , Arterite de Células Gigantes , Infarto do Miocárdio , Arterite de Takayasu , Humanos , Receptores de Somatostatina , Estudos Prospectivos , Fluordesoxiglucose F18 , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Vasos Coronários/patologia , Aterosclerose/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacologia
13.
BJR Open ; 4(1): 20210078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105417

RESUMO

Objectives: To investigate the relationship between magnetization transfer (MT) imaging and tissue macromolecules in high-grade serous ovarian cancer (HGSOC) and whether MT ratio (MTR) changes following neoadjuvant chemotherapy (NACT). Methods: This was a prospective observational study. 12 HGSOC patients were imaged before treatment. MTR was compared to quantified tissue histology and immunohistochemistry. For a subset of patients (n = 5), MT imaging was repeated after NACT. The Shapiro-Wilk test was used to assess for normality of data and Spearman's rank-order or Pearson's correlation tests were then used to compare MTR with tissue quantifications. The Wilcoxon signed-rank test was used to assess for changes in MTR after treatment. Results: Treatment-naïve tumour MTR was 21.9 ± 3.1% (mean ± S.D.). MTR had a positive correlation with cellularity, rho = 0.56 (p < 0.05) and a negative correlation with tumour volume, ρ = -0.72 (p = 0.01). MTR did not correlate with the extracellular proteins, collagen IV or laminin (p = 0.40 and p = 0.90). For those patients imaged before and after NACT, an increase in MTR was observed in each case with mean MTR 20.6 ± 3.1% (median 21.1) pre-treatment and 25.6 ± 3.4% (median 26.5) post-treatment (p = 0.06). Conclusion: In treatment-naïve HGSOC, MTR is associated with cellularity, possibly reflecting intracellular macromolecular concentration. MT may also detect the HGSOC response to NACT, however larger studies are required to validate this finding. Advances in knowledge: MTR in HGSOC is influenced by cellularity. This may be applied to assess for cell changes following treatment.

14.
Eur Stroke J ; 7(3): 323-330, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36082255

RESUMO

Background: Cerebral small vessel disease (SVD) is a common cause of stroke and cognitive impairment. Recent data has implicated neuroinflammation and increased blood-brain barrier (BBB) permeability in its pathogenesis, but whether such processes are causal and can be therapeutically modified is uncertain. In a rodent model of SVD, minocycline was associated with reduced white matter lesions, inflammation and BBB permeability. Aims: To determine whether blood-brain barrier permeability (measured using dynamic contrast-enhanced MRI) and microglial activation (measured by positron emission tomography using the radioligand 11C-PK11195) can be modified in SVD. Design: Phase II randomised double blind, placebo-controlled trial of minocycline 100 mg twice daily for 3 months in 44 participants with moderate to severe SVD defined as a clinical lacunar stroke and confluent white matter hyperintensities. Outcomes: Primary outcome measures are volume and intensity of focal increases of blood-brain barrier permeability and microglial activation determined using PET-MRI imaging. Secondary outcome measures include inflammatory biomarkers in serum, and change in conventional MRI markers and cognitive performance over 1 year follow up. Discussion: The MINERVA trial aims to test whether minocycline can influence novel pathological processes thought to be involved in SVD progression, and will provide insights into whether central nervous system inflammation in SVD can be therapeutically modulated.

15.
Radiol Imaging Cancer ; 4(4): e210076, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35838532

RESUMO

Purpose To evaluate glioblastoma (GBM) metabolism by using hyperpolarized carbon 13 (13C) MRI to monitor the exchange of the hyperpolarized 13C label between injected [1-13C]pyruvate and tumor lactate and bicarbonate. Materials and Methods In this prospective study, seven treatment-naive patients (age [mean ± SD], 60 years ± 11; five men) with GBM were imaged at 3 T by using a dual-tuned 13C-hydrogen 1 head coil. Hyperpolarized [1-13C]pyruvate was injected, and signal was acquired by using a dynamic MRI spiral sequence. Metabolism was assessed within the tumor, in the normal-appearing brain parenchyma (NABP), and in healthy volunteers by using paired or unpaired t tests and a Wilcoxon signed rank test. The Spearman ρ correlation coefficient was used to correlate metabolite labeling with lactate dehydrogenase A (LDH-A) expression and some immunohistochemical markers. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results The bicarbonate-to-pyruvate (BP) ratio was lower in the tumor than in the contralateral NABP (P < .01). The tumor lactate-to-pyruvate (LP) ratio was not different from that in the NABP (P = .38). The LP and BP ratios in the NABP were higher than those observed previously in healthy volunteers (P < .05). Tumor lactate and bicarbonate signal intensities were strongly correlated with the pyruvate signal intensity (ρ = 0.92, P < .001, and ρ = 0.66, P < .001, respectively), and the LP ratio was weakly correlated with LDH-A expression in biopsy samples (ρ = 0.43, P = .04). Conclusion Hyperpolarized 13C MRI demonstrated variation in lactate labeling in GBM, both within and between tumors. In contrast, bicarbonate labeling was consistently lower in tumors than in the surrounding NABP. Keywords: Hyperpolarized 13C MRI, Glioblastoma, Metabolism, Cancer, MRI, Neuro-oncology Supplemental material is available for this article. Published under a CC BY 4.0 license.


Assuntos
Glioblastoma , Bicarbonatos , Glioblastoma/diagnóstico por imagem , Humanos , Lactato Desidrogenase 5 , Ácido Láctico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ácido Pirúvico/metabolismo
16.
Neuroimage ; 257: 119284, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533826

RESUMO

Deuterium metabolic imaging (DMI) and hyperpolarized 13C-pyruvate MRI (13C-HPMRI) are two emerging methods for non-invasive and non-ionizing imaging of tissue metabolism. Imaging cerebral metabolism has potential applications in cancer, neurodegeneration, multiple sclerosis, traumatic brain injury, stroke, and inborn errors of metabolism. Here we directly compare these two non-invasive methods at 3 T for the first time in humans and show how they simultaneously probe both oxidative and non-oxidative metabolism. DMI was undertaken 1-2 h after oral administration of [6,6'-2H2]glucose, and 13C-MRI was performed immediately following intravenous injection of hyperpolarized [1-13C]pyruvate in ten and nine normal volunteers within each arm respectively. DMI was used to generate maps of deuterium-labelled water, glucose, lactate, and glutamate/glutamine (Glx) and the spectral separation demonstrated that DMI is feasible at 3 T. 13C-HPMRI generated maps of hyperpolarized carbon-13 labelled pyruvate, lactate, and bicarbonate. The ratio of 13C-lactate/13C-bicarbonate (mean 3.7 ± 1.2) acquired with 13C-HPMRI was higher than the equivalent 2H-lactate/2H-Glx ratio (mean 0.18 ± 0.09) acquired using DMI. These differences can be explained by the route of administering each probe, the timing of imaging after ingestion or injection, as well as the biological differences in cerebral uptake and cellular physiology between the two molecules. The results demonstrate these two metabolic imaging methods provide different yet complementary readouts of oxidative and reductive metabolism within a clinically feasible timescale. Furthermore, as DMI was undertaken at a clinical field strength within a ten-minute scan time, it demonstrates its potential as a routine clinical tool in the future.


Assuntos
Bicarbonatos , Imageamento por Ressonância Magnética , Bicarbonatos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Isótopos de Carbono/metabolismo , Deutério/metabolismo , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Ácido Pirúvico
18.
J Magn Reson Imaging ; 56(2): 450-461, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35343008

RESUMO

BACKGROUND: Methods for accurate quantification of lung fluid in heart failure (HF) are needed. Dynamic contrast-enhanced (DCE)-MRI may be an appropriate modality. PURPOSE: DCE-MRI evaluation of fraction of fluid volume in the interstitial lung space (ve ) and vascular permeability (Ktrans ). STUDY TYPE: Prospective, single-center method validation. POPULATION: Seventeen evaluable healthy volunteers (HVs), 12 participants with HF, and 3 with acute decompensated HF (ADHF). FIELD STRENGTH/SEQUENCE: T1 mapping (spoiled gradient echo variable flip angle acquisition) followed by dynamic series (three-dimensional spoiled gradient-recalled echo acquisitions [constant echo time, repetition time, and flip angle at 1.5 T]). ASSESSMENT: Three whole-chest scans were acquired: baseline (Session 1), 1-week later (Session 2), following exercise (Session 3). Extended Tofts model quantified ve and Ktrans (voxel-wise basis); total lung median measures were extracted and fitted via repeat measure analysis of variance (ANOVA) model. Patient tolerability of the scanning protocol was assessed. STATISTICAL TESTS: This was constructed as an experimental medicine study. PRIMARY ENDPOINTS: Ktrans and ve at baseline (HV vs. HF), change in Ktrans and ve following exercise, and following lung congestion resolution (ADHF). Ktrans and ve were fitted separately using ANOVA. Secondary endpoint: repeatability, that is, within-participant variability in ve and Ktrans between sessions (coefficient of variation estimated via mixed effects model). RESULTS: There was no significant difference in mean Ktrans between HF and HV (P ≤ 0.17): 0.2216 minutes-1 and 0.2353 minutes-1 (Session 1), 0.2044 minutes-1 and 0.2567 minutes-1 (Session 2), 0.1841 minutes-1 and 0.2108 minutes-1 (Session 3), respectively. ve was greater in the HF group (all scans, P ≤ 0.02). Results were repeatable between Sessions 1 and 2; mean values for HF and HV were 0.4946 and 0.3346 (Session 1), 0.4353 and 0.3205 (Session 2), respectively. There was minimal difference in Ktrans or ve between scans for participants with ADHF (small population precluded significance testing). Scanning was well tolerated. DATA CONCLUSION: While no differences were detected in Ktrans , ve was greater in chronic HF patients vs. HV, augmented beyond plasma and intracellular volume. DCE-MRI is a valuable diagnostic and physiologic tool to evaluate changes in fluid volume in the interstitial lung space associated with symptomatic HF. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Meios de Contraste , Insuficiência Cardíaca , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Permeabilidade
19.
J Magn Reson Imaging ; 56(4): 1042-1052, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35224803

RESUMO

BACKGROUND: Three-dimensional variable flip angle (VFA) methods are commonly used for T1 mapping of the liver, but there is no data on the accuracy, repeatability, and reproducibility of this technique in this organ in a multivendor setting. PURPOSE: To measure bias, repeatability, and reproducibility of VFA T1 mapping in the liver. STUDY TYPE: Prospective observational. POPULATION: Eight healthy volunteers, four women, with no known liver disease. FIELD STRENGTH/SEQUENCE: 1.5-T and 3.0-T; three-dimensional steady-state spoiled gradient echo with VFAs; Look-Locker. ASSESSMENT: Traveling volunteers were scanned twice each (30 minutes to 3 months apart) on six MRI scanners from three vendors (GE Healthcare, Philips Medical Systems, and Siemens Healthineers) at two field strengths. The maximum period between the first and last scans among all volunteers was 9 months. Volunteers were instructed to abstain from alcohol intake for at least 72 hours prior to each scan and avoid high cholesterol foods on the day of the scan. STATISTICAL TESTS: Repeated measures ANOVA, Student t-test, Levene's test of variances, and 95% significance level. The percent error relative to literature liver T1 in healthy volunteers was used to assess bias. The relative error (RE) due to intrascanner and interscanner variation in T1 measurements was used to assess repeatability and reproducibility. RESULTS: The 95% confidence interval (CI) on the mean bias and mean repeatability RE of VFA T1 in the healthy liver was 34 ± 6% and 10 ± 3%, respectively. The 95% CI on the mean reproducibility RE at 1.5 T and 3.0 T was 29 ± 7% and 25 ± 4%, respectively. DATA CONCLUSION: Bias, repeatability, and reproducibility of VFA T1 mapping in the liver in a multivendor setting are similar to those reported for breast, prostate, and brain. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Imagens de Fantasmas , Próstata , Reprodutibilidade dos Testes
20.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053497

RESUMO

Differentiating aggressive clear cell renal cell carcinoma (ccRCC) from indolent lesions is challenging using conventional imaging. This work prospectively compared the metabolic imaging phenotype of renal tumors using carbon-13 MRI following injection of hyperpolarized [1-13C]pyruvate (HP-13C-MRI) and validated these findings with histopathology. Nine patients with treatment-naïve renal tumors (6 ccRCCs, 1 liposarcoma, 1 pheochromocytoma, 1 oncocytoma) underwent pre-operative HP-13C-MRI and conventional proton (1H) MRI. Multi-regional tissue samples were collected using patient-specific 3D-printed tumor molds for spatial registration between imaging and molecular analysis. The apparent exchange rate constant (kPL) between 13C-pyruvate and 13C-lactate was calculated. Immunohistochemistry for the pyruvate transporter (MCT1) from 44 multi-regional samples, as well as associations between MCT1 expression and outcome in the TCGA-KIRC dataset, were investigated. Increasing kPL in ccRCC was correlated with increasing overall tumor grade (ρ = 0.92, p = 0.009) and MCT1 expression (r = 0.89, p = 0.016), with similar results acquired from the multi-regional analysis. Conventional 1H-MRI parameters did not discriminate tumor grades. The correlation between MCT1 and ccRCC grade was confirmed within a TCGA dataset (p < 0.001), where MCT1 expression was a predictor of overall and disease-free survival. In conclusion, metabolic imaging using HP-13C-MRI differentiates tumor aggressiveness in ccRCC and correlates with the expression of MCT1, a predictor of survival. HP-13C-MRI may non-invasively characterize metabolic phenotypes within renal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...