Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(7): 075107, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922301

RESUMO

EXPANSE, an EXPanded Angle Neutron Spin Echo instrument, has been proposed and selected as one of the first suite of instruments to be built at the Second Target Station of the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is designed to address scientific problems that involve high-energy resolution (neV-µeV) of dynamic processes in a wide range of materials. The wide-angle detector banks of EXPANSE provide coverage of nearly two orders of magnitude in scattering wavenumbers, and the wide wavelength band affords approximately four orders of magnitude in Fourier times. This instrument will offer unique capabilities that are not available in the currently existing neutron scattering instruments in the United States. Specifically, EXPANSE will enable direct measurements of slow dynamics in the time domain over wide Q-ranges simultaneously and will also enable time-resolved spectroscopic studies. The instrument is expected to contribute to a diverse range of science areas, including soft matter, polymers, biological materials, liquids and glasses, energy materials, unconventional magnets, and quantum materials.

2.
Rev Sci Instrum ; 93(7): 075104, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922314

RESUMO

CENTAUR has been selected as one of the eight initial instruments to be built at the Second Target Station (STS) of the Spallation Neutron Source at Oak Ridge National Laboratory. It is a small-angle neutron scattering (SANS) and wide-angle neutron scattering (WANS) instrument with diffraction and spectroscopic capabilities. This instrument will maximally leverage the high brightness of the STS source, the state-of-the-art neutron optics, and a suite of detectors to deliver unprecedented capabilities that enable measurements over a wide range of length scales with excellent resolution, measurements on smaller samples, and time-resolved investigations of evolving structures. Notably, the simultaneous WANS and diffraction capability will be unique among neutron scattering instruments in the United States. This instrument will provide much needed capabilities for soft matter and polymer sciences, geology, biology, quantum condensed matter, and other materials sciences that need in situ and operando experiments for kinetic and/or out-of-equilibrium studies. Beam polarization and a high-resolution chopper will enable detailed structural and dynamical investigations of magnetic and quantum materials. CENTAUR's excellent resolution makes it ideal for low-angle diffraction studies of highly ordered large-scale structures, such as skyrmions, shear-induced ordering in colloids, and biomembranes. Additionally, the spectroscopic mode of this instrument extends to lower momentum transfers than are currently possible with existing spectrometers, thereby providing a unique capability for inelastic SANS studies.

3.
Rev Sci Instrum ; 93(6): 065103, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778039

RESUMO

The VERsatile DIffractometer will set a new standard for a world-class magnetic diffractometer with versatility for both powder and single crystal samples and capability for wide-angle polarization analysis. The instrument will utilize a large single-frame bandwidth and will offer high-resolution at low momentum transfers and excellent signal-to-noise ratio. A horizontal elliptical mirror concept with interchangeable guide pieces will provide high flexibility in beam divergence to allow for a high-resolution powder mode, a high-intensity single crystal mode, and a polarized beam option. A major science focus will be quantum materials that exhibit emergent properties arising from collective effects in condensed matter. The unique use of polarized neutrons to isolate the magnetic signature will provide optimal experimental input to state-of-the-art modeling approaches to access detailed insight into local magnetic ordering.

4.
Rev Sci Instrum ; 93(5): 053911, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649786

RESUMO

Materials engineering by neutron scattering (MENUS) at the second target station will be a transformational high-flux, versatile, multiscale materials engineering diffraction beamline with unprecedented new capabilities for the study of complex materials and structures. It will support both fundamental and applied materials research in a broad range of fields. MENUS will combine unprecedented long-wavelength neutron flux and unique detector coverage to enable real-time studies of complex structural and functional materials under external stimuli. The incorporated small angle neutron scattering and transmission/imaging capabilities will extend its sensitivity to larger length scales and higher spatial resolution. Multimodal MENUS will provide crystallographic and microstructure data to the materials science and engineering community to understand lattice strain/phase transition/microstructure/texture evolution in three orthogonal directions in complex material systems under combined extreme applied conditions. The capabilities of MENUS will open new scientific opportunities and meet the research needs for science challenges to enable studies of a range of phenomena and answer the key questions in material design/exploration, advanced material processing, transformative manufacturing, and material operations of national impacts in our daily life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...