Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(23): 12763-12771, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461369

RESUMO

Aphids are sap-feeding insects that colonize a broad range of plant species and often cause feeding damage and transmit plant pathogens, including bacteria, viruses, and viroids. These insects feed from the plant vascular tissue, predominantly the phloem. However, it remains largely unknown how aphids, and other sap-feeding insects, establish intimate long-term interactions with plants. To identify aphid virulence factors, we took advantage of the ability of the green peach aphid Myzus persicae to colonize divergent plant species. We found that a M. persicae clone of near-identical females established stable colonies on nine plant species of five representative plant eudicot and monocot families that span the angiosperm phylogeny. Members of the novel aphid gene family Ya are differentially expressed in aphids on the nine plant species and are coregulated and organized as tandem repeats in aphid genomes. Aphids translocate Ya transcripts into plants, and some transcripts migrate to distal leaves within several plant species. RNAi-mediated knockdown of Ya genes reduces M. persicae fecundity, and M. persicae produces more progeny on transgenic plants that heterologously produce one of the systemically migrating Ya transcripts as a long noncoding (lnc) RNA. Taken together, our findings show that beyond a range of pathogens, M. persicae aphids translocate their own transcripts into plants, including a Ya lncRNA that migrates to distal locations within plants, promotes aphid fecundity, and is a member of a previously undescribed host-responsive aphid gene family that operate as virulence factors.


Assuntos
Afídeos/patogenicidade , Magnoliopsida/parasitologia , Transporte de RNA , RNA Longo não Codificante/metabolismo , Fatores de Virulência/metabolismo , Animais , Afídeos/genética , Proteínas de Insetos/genética , RNA Longo não Codificante/genética , Fatores de Virulência/genética
2.
Mol Plant Pathol ; 18(4): 582-595, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27118426

RESUMO

Plants possess an innate immune system capable of restricting invasion by most potential pathogens. At the cell surface, the recognition of microbe-associated molecular patterns (MAMPs) and/or damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs) represents the first event for the prompt mounting of an effective immune response. Pathogens have evolved effectors that block MAMP-triggered immunity. The Pseudomonas syringae effector AvrPto abolishes immunity triggered by the peptide MAMPs flg22 and elf18, derived from the bacterial flagellin and elongation factor Tu, respectively, by inhibiting the kinase function of the corresponding receptors FLS2 and EFR, as well as their co-receptors BAK1 and BKK1. Oligogalacturonides (OGs), a well-known class of DAMPs, are oligomers of α-1,4-linked galacturonosyl residues, released on partial degradation of the plant cell wall homogalacturonan. We show here that AvrPto affects only a subset of the OG-triggered immune responses and that, among these responses, only a subset is affected by the concomitant loss of BAK1 and BKK1. However, the antagonistic effect on auxin-related responses is not affected by either AvrPto or the loss of BAK1/BKK1. These observations reveal an unprecedented complexity among the MAMP/DAMP response cascades. We also show that the signalling system mediated by Peps, another class of DAMPs, and their receptors PEPRs, contributes to OG-activated immunity. We hypothesize that OGs are sensed through multiple and partially redundant perception/transduction complexes, some targeted by AvrPto, but not necessarily comprising BAK1 and BKK1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Ácidos Hexurônicos/farmacologia , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis , Resistência à Doença/efeitos dos fármacos , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glucanos/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas , Pseudomonas syringae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/microbiologia
3.
Plant J ; 84(6): 1073-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26485342

RESUMO

Plant immunity against pathogens is achieved through rapid activation of defense responses that occur upon sensing of microbe- or damage-associated molecular patterns, respectively referred to as MAMPs and DAMPs. Oligogalacturonides (OGs), linear fragments derived from homogalacturonan hydrolysis by pathogen-secreted cell wall-degrading enzymes, and flg22, a 22-amino acid peptide derived from the bacterial flagellin, represent prototypical DAMPs and MAMPs, respectively. Both types of molecules induce protection against infections. In plants, like in animals, calcium is a second messenger that mediates responses to biotic stresses by activating calcium-binding proteins. Here we show that simultaneous loss of calcium-dependent protein kinases CPK5, CPK6 and CPK11 affects Arabidopsis thaliana basal as well as elicitor- induced resistance to the necrotroph Botrytis cinerea, by affecting pathogen-induced ethylene production and accumulation of the ethylene biosynthetic enzymes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase 2 (ACS2) and 6 (ACS6). Moreover, ethylene signaling contributes to OG-triggered immunity activation, and lack of CPK5, CPK6 and CPK11 affects the duration of OG- and flg22-induced gene expression, indicating that these kinases are shared elements of both DAMP and MAMP signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Botrytis/metabolismo , Etilenos/biossíntese , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas Quinases/classificação , Proteínas Quinases/genética , Plântula , Transdução de Sinais/fisiologia
4.
Bio Protoc ; 5(2)2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29085857

RESUMO

Phytoalexins are heterogeneous low molecular mass secondary metabolites with antimicrobial activity produced at the infection site in response to pathogen invasion and represent an important part of the plant defense repertoire. Camalexin (3-Thiazol-2'-yl-indole) is a known phytoalexin first detected and isolated in Camelina sativa, from which it takes its name, infected with Alternaria brassicae (Browne et al., 1991). Production of camalexin is also induced in Arabidopsis thaliana leaves by a range of biotrophic and necrotrophic plant pathogens (bacteria, oomycetes, fungi and viruses) (Ahuja et al., 2012) as well as by abiotic stresses, such as UV and chemicals (e.g. acifluorfen, paraquat, chlorsulfuron and α-amino butyric acid) (Zhao et al., 1998; Tierens et al., 2002). Camalexin originates from tryptophan and CYP79B2 and CYP71B15 (PAD3) are P450 enzymes that catalyze important steps in its biosynthetic pathway (Glawischnig, 2007). The detection and quantification of camalexin content is required to understand how it is produced upon various stress conditions. Here we describe an easy method for camalexin extraction from Arabidopsis leaves infected with the necrotrophic fungus Botrytis cinerea, and further determination of camalexin levels by liquid chromatography-mass spectrometry (LC-MS). The method is sensitive enough to trace amount of camalexin down to the low pico-gram (10 pg/mg FW) range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...