Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 178: 108033, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356308

RESUMO

Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Estados Unidos , Humanos , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Água , Laboratórios
2.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626647

RESUMO

Global demand for safe and sustainable water supplies necessitates a better understanding of contaminant exposures in potential reuse waters. In this study, we compared exposures and load contributions to surface water from the discharge of three reuse waters (wastewater effluent, urban stormwater, and agricultural runoff). Results document substantial and varying organic-chemical contribution to surface water from effluent discharges (e.g., disinfection byproducts [DBP], prescription pharmaceuticals, industrial/household chemicals), urban stormwater (e.g., polycyclic aromatic hydrocarbons, pesticides, nonprescription pharmaceuticals), and agricultural runoff (e.g., pesticides). Excluding DBPs, episodic storm-event organic concentrations and loads from urban stormwater were comparable to and often exceeded those of daily wastewater-effluent discharges. We also assessed if wastewater-effluent irrigation to corn resulted in measurable effects on organic-chemical concentrations in rain-induced agricultural runoff and harvested feedstock. Overall, the target-organic load of 491 g from wastewater-effluent irrigation to the study corn field during the 2019 growing season did not produce substantial dissolved organic-contaminant contributions in subsequent rain-induced runoff events. Out of the 140 detected organics in source wastewater-effluent irrigation, only imidacloprid and estrone had concentrations that resulted in observable differences between rain-induced agricultural runoff from the effluent-irrigated and nonirrigated corn fields. Analyses of pharmaceuticals and per-/polyfluoroalkyl substances in at-harvest corn-plant samples detected two prescription antibiotics, norfloxacin and ciprofloxacin, at concentrations of 36 and 70 ng/g, respectively, in effluent-irrigated corn-plant samples; no contaminants were detected in noneffluent irrigated corn-plant samples.

3.
Sci Total Environ ; 868: 161672, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36657670

RESUMO

In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes, samples were collected in 2018-2019 from 47 northeast Iowa farms and analyzed for 35 inorganics, 437 unique organics, 5 in vitro bioassays, and 11 microbial assays. Twenty-six inorganics and 51 organics, dominated by pesticides and related transformation products (35 herbicide-, 5 insecticide-, and 2 fungicide-related), were observed in TW. Heterotrophic bacteria detections were near ubiquitous (94 % of the samples), with detection of total coliform bacteria in 28 % of the samples and growth on at least one putative-pathogen selective media across all TW samples. Health-based hazard index screening levels were exceeded frequently in private-well TW and attributed primarily to inorganics (nitrate, uranium). Results support incorporation of residential treatment systems to protect against contaminant exposure and the need for increased monitoring of rural private-well homes. Continued assessment of unmonitored and unregulated private-supply TW is needed to model contaminant exposures and human-health risks.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Humanos , Iowa , Poluentes Químicos da Água/análise , Agricultura , Monitoramento Ambiental/métodos
4.
Environ Int ; 171: 107701, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542998

RESUMO

BACKGROUND: Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS: BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS: 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION: The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.


Assuntos
Água Potável , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Humanos , Estados Unidos , Abastecimento de Água , Exposição Ambiental/efeitos adversos , Poluentes Químicos da Água/análise
5.
ACS ES T Water ; 2(10): 1772-1788, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277121

RESUMO

In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.

6.
Environ Sci Technol ; 56(2): 1028-1040, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34967600

RESUMO

Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 µg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 µg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 µg L-1; clothianidin TMG, 2.02 µg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Bebidas , Monitoramento Ambiental , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
7.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134358

RESUMO

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Monitoramento Ambiental , Humanos , Porto Rico , Água , Poluentes Químicos da Água/análise
8.
Environ Int ; 152: 106487, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33752165

RESUMO

BACKGROUND: Humans are primary drivers of environmental contamination worldwide, including in drinking-water resources. In the United States (US), federal and state agencies regulate and monitor public-supply drinking water while private-supply monitoring is rare; the current lack of directly comparable information on contaminant-mixture exposures and risks between private- and public-supplies undermines tapwater (TW) consumer decision-making. METHODS: We compared private- and public-supply residential point-of-use TW at Cape Cod, Massachusetts, where both supplies share the same groundwater source. TW from 10 private- and 10 public-supply homes was analyzed for 487 organic, 38 inorganic, 8 microbial indicators, and 3 in vitro bioactivities. Concentrations were compared to existing protective health-based benchmarks, and aggregated Hazard Indices (HI) of regulated and unregulated TW contaminants were calculated along with ratios of in vitro exposure-activity cutoffs. RESULTS: Seventy organic and 28 inorganic constituents were detected in TW. Median detections were comparable, but median cumulative concentrations were substantially higher in public supply due to 6 chlorine-disinfected samples characterized by disinfection byproducts and corresponding lower heterotrophic plate counts. Public-supply applicable maximum contaminant (nitrate) and treatment action (lead and copper) levels were exceeded in private-supply TW samples only. Exceedances of health-based HI screening levels of concern were common to both TW supplies. DISCUSSION: These Cape Cod results indicate comparable cumulative human-health concerns from contaminant exposures in private- and public-supply TW in a shared source-water setting. Importantly, although this study's analytical coverage exceeds that currently feasible for water purveyors or homeowners, it nevertheless is a substantial underestimation of the full breadth of contaminant mixtures documented in the environment and potentially present in drinking water. CONCLUSION: Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment, including consumer point-of-use treatment, is warranted to reduce risks associated with long-term TW contaminant exposures, especially in vulnerable populations.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Monitoramento Ambiental , Humanos , Massachusetts , Estados Unidos , Água , Poluentes Químicos da Água/análise , Abastecimento de Água
9.
Sci Total Environ ; 719: 137236, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126404

RESUMO

Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.


Assuntos
Purificação da Água , Chicago , Água Potável , Michigan , Praguicidas , Estados Unidos , Poluentes Químicos da Água
10.
Environ Sci Technol ; 52(23): 13972-13985, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30460851

RESUMO

Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 µg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 µg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Estados Unidos , Abastecimento de Água , Local de Trabalho
11.
Sci Total Environ ; 636: 69-79, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29704718

RESUMO

Discharges from pharmaceutical manufacturing facilities (PMFs) previously have been identified as important sources of pharmaceuticals to the environment. Yet few studies are available to establish the influence of PMFs on the pharmaceutical source contribution to wastewater treatment plants (WWTPs) and waterways at the national scale. Consequently, a national network of 13 WWTPs receiving PMF discharges, six WWTPs with no PMF input, and one WWTP that transitioned through a PMF closure were selected from across the United States to assess the influence of PMF inputs on pharmaceutical loading to WWTPs. Effluent samples were analyzed for 120 pharmaceuticals and pharmaceutical degradates. Of these, 33 pharmaceuticals had concentrations substantially higher in PMF-influenced effluent (maximum 555,000 ng/L) compared to effluent from control sites (maximum 175 ng/L). Concentrations in WWTP receiving PMF input are variable, as discharges from PMFs are episodic, indicating that production activities can vary substantially over relatively short (several months) periods and have the potential to rapidly transition to other pharmaceutical products. Results show that PMFs are an important, national-scale source of pharmaceuticals to the environment.


Assuntos
Monitoramento Ambiental , Preparações Farmacêuticas/análise , Águas Residuárias/estatística & dados numéricos , Poluentes Químicos da Água/análise , Indústria Farmacêutica/estatística & dados numéricos , Humanos , Instalações Industriais e de Manufatura , Estados Unidos , Eliminação de Resíduos Líquidos/estatística & dados numéricos
12.
Sci Total Environ ; 580: 83-89, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28024750

RESUMO

The presence of anthropogenic contaminants such as antimicrobials, flame-retardants, and plasticizers in runoff from agricultural fields applied with municipal biosolids may pose a potential threat to the environment. This study assesses the potential for rainfall-induced runoff of 69 anthropogenic waste indicators (AWIs), widely found in household and industrial products, from biosolids amended field plots. The agricultural field containing the test plots was treated with biosolids for the first time immediately prior to this study. AWIs present in soil and biosolids were isolated by continuous liquid-liquid extraction and analyzed by full-scan gas chromatography/mass spectrometry. Results for 18 AWIs were not evaluated due to their presence in field blank QC samples, and another 34 did not have sufficient detection frequency in samples to analyze trends in data. A total of 17 AWIs, including 4-nonylphenol, triclosan, and tris(2-butoxyethyl)phosphate, were present in runoff with acceptable data quality and frequency for subsequent interpretation. Runoff samples were collected 5days prior to and 1, 9, and 35days after biosolids application. Of the 17 AWIs considered, 14 were not detected in pre-application samples, or their concentrations were much smaller than in the sample collected one day after application. A range of trends was observed for individual AWI concentrations (typically from 0.1 to 10µg/L) over the course of the study, depending on the combination of partitioning and degradation mechanisms affecting each compound most strongly. Overall, these results indicate that rainfall can mobilize anthropogenic contaminants from biosolids-amended agricultural fields, directly to surface waters and redistribute them to terrestrial sites away from the point of application via runoff. For 14 of 17 compounds examined, the potential for runoff remobilization during rainstorms persists even after three 100-year rainstorm-equivalent simulations and the passage of a month.


Assuntos
Agricultura , Chuva , Poluentes do Solo/análise , Resíduos Sólidos/classificação , Movimentos da Água , Colorado , Fertilizantes , Solo/química
13.
Environ Toxicol Chem ; 35(4): 906-18, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26562222

RESUMO

Final leachates (leachate after storage or treatment processes) from 22 landfills in 12 states were analyzed for 190 pharmaceuticals and other contaminants of emerging concern (CECs), which were detected in every sample, with the number of CECs ranging from 1 to 58 (median = 22). In total, 101 different CECs were detected in leachate samples, including 43 prescription pharmaceuticals, 22 industrial chemicals, 15 household chemicals, 12 nonprescription pharmaceuticals, 5 steroid hormones, and 4 animal/plant sterols. The most frequently detected CECs were lidocaine (91%, local anesthetic), cotinine (86%, nicotine degradate), carisoprodol (82%, muscle relaxant), bisphenol A (77%, component of plastics and thermal paper), carbamazepine (77%, anticonvulsant), and N,N-diethyltoluamide (68%, insect repellent). Concentrations of CECs spanned 7 orders of magnitude, ranging from 2.0 ng/L (estrone) to 17,200,000 ng/L (bisphenol A). Concentrations of household and industrial chemicals were the greatest (∼1000-1,000,000 ng/L), followed by plant/animal sterols (∼1000-100,000 ng/L), nonprescription pharmaceuticals (∼100-10,000 ng/L), prescription pharmaceuticals (∼10-10,000 ng/L), and steroid hormones (∼10-100 ng/L). The CEC concentrations in leachate from active landfills were significantly greater than those in leachate from closed, unlined landfills (p = 0.05). The CEC concentrations were significantly greater (p < 0.01) in untreated leachate compared with treated leachate. The CEC concentrations were significantly greater in leachate disposed to wastewater treatment plants from modern lined landfills than in leachate released to groundwater from closed, unlined landfills (p = 0.04). The CEC concentrations were significantly greater (p = 0.06) in the fresh leachate (leachate before storage or treatment) reported in a previous study compared with the final leachate sampled for the present study.


Assuntos
Preparações Farmacêuticas/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Geografia , Água Subterrânea/química , Estados Unidos , Águas Residuárias/química
14.
Environ Sci Process Impacts ; 16(10): 2335-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111596

RESUMO

To better understand the composition of contaminants of emerging concern (CECs) in landfill leachate, fresh leachate from 19 landfills was sampled across the United States during 2011. The sampled network included 12 municipal and 7 private landfills with varying landfill waste compositions, geographic and climatic settings, ages of waste, waste loads, and leachate production. A total of 129 out of 202 CECs were detected during this study, including 62 prescription pharmaceuticals, 23 industrial chemicals, 18 nonprescription pharmaceuticals, 16 household chemicals, 6 steroid hormones, and 4 plant/animal sterols. CECs were detected in every leachate sample, with the total number of detected CECs in samples ranging from 6 to 82 (median = 31). Bisphenol A (BPA), cotinine, and N,N-diethyltoluamide (DEET) were the most frequently detected CECs, being found in 95% of the leachate samples, followed by lidocaine (89%) and camphor (84%). Other frequently detected CECs included benzophenone, naphthalene, and amphetamine, each detected in 79% of the leachate samples. CEC concentrations spanned six orders of magnitude, ranging from ng L(-1) to mg L(-1). Industrial and household chemicals were measured in the greatest concentrations, composing more than 82% of the total measured CEC concentrations. Maximum concentrations for three household and industrial chemicals, para-cresol (7 020 000 ng L(-1)), BPA (6 380 000 ng L(-1)), and phenol (1 550 000 ng L(-1)), were the largest measured, with these CECs composing 70% of the total measured CEC concentrations. Nonprescription pharmaceuticals represented 12%, plant/animal sterols 4%, prescription pharmaceuticals 1%, and steroid hormones <1% of the total measured CEC concentrations. Leachate from landfills in areas receiving greater amounts of precipitation had greater frequencies of CEC detections and concentrations in leachate than landfills receiving less precipitation.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Compostos Benzidrílicos/análise , Cresóis/análise , Fenóis/análise , Eliminação de Resíduos , Estados Unidos , Instalações de Eliminação de Resíduos
15.
Chemosphere ; 95: 124-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24050713

RESUMO

Between April 22 and July 15, 2010, approximately 4.9 million barrels of oil were released into the Gulf of Mexico from the Deepwater Horizon oil well. Approximately 16% of the oil was chemically dispersed, at the surface and at 1500 m depth, using Corexit 9527 and Corexit 9500, which contain dioctyl sodium sulfosuccinate (DOSS) as a major surfactant component. This was the largest documented release of oil in history at substantial depth, and the first time large quantities of dispersant (0.77 million gallons of approximately 1.9 million gallons total) were applied to a subsurface oil plume. During two cruises in late May and early June, water samples were collected at the surface and at depth for DOSS analysis. Real-time fluorimetry data was used to infer the presence of oil components to select appropriate sampling depths. Samples were stored frozen and in the dark for approximately 6 months prior to analysis by liquid chromatography/tandem mass spectrometry with isotope-dilution quantification. The blank-limited method detection limit (0.25 µg L(-1)) was substantially less than the U.S. Environmental Protection Agency's (USEPA) aquatic life benchmark of 40 µg L(-1). Concentrations of DOSS exceeding 200 µg L(-1) were observed in one surface sample near the well site; in subsurface samples DOSS did not exceed 40 µg L(-1). Although DOSS was present at high concentration in the immediate vicinity of the well where it was being continuously applied, a combination of biodegradation, photolysis, and dilution likely reduced persistence at concentrations exceeding the USEPA aquatic life benchmark beyond this immediate area.


Assuntos
Ácido Dioctil Sulfossuccínico/análise , Poluição por Petróleo/análise , Tensoativos/análise , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Monitoramento Ambiental , Golfo do México , Lipídeos/análise , Estados Unidos
16.
Environ Sci Technol ; 47(5): 2177-88, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23398602

RESUMO

Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 µg L(-1)) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 µg L(-1)), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications.


Assuntos
Monitoramento Ambiental , Compostos Orgânicos/análise , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Colorado , Ecossistema , Iowa , Eliminação de Resíduos Líquidos
17.
Sci Total Environ ; 443: 700-16, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23228716

RESUMO

The Potomac River basin is an area where a high prevalence of abnormalities such as testicular oocytes (TO), skin lesions, and mortality has been observed in smallmouth bass (SMB, Micropterus dolomieu). Previous research documented a variety of chemicals in regional streams, implicating chemical exposure as one plausible explanation for these biological effects. Six stream sites in the Potomac basin (and one out-of-basin reference site) were sampled to provide an assessment of chemicals in these streams. Potential early life-stage exposure to chemicals detected was assessed by collecting samples in and around SMB nesting areas. Target chemicals included those known to be associated with important agricultural and municipal wastewater sources in the Potomac basin. The prevalence and severity of TO in SMB were also measured to determine potential relations between chemistry and biological effects. A total of 39 chemicals were detected at least once in the discrete-water samples, with atrazine, caffeine, deethylatrazine, simazine, and iso-chlorotetracycline being most frequently detected. Of the most frequently detected chemicals, only caffeine was detected in water from the reference site. No biogenic hormones/sterols were detected in the discrete-water samples. In contrast, 100 chemicals (including six biogenic hormones/sterols) were found in a least one passive-water sample, with 25 being detected at all such samples. In addition, 46 chemicals (including seven biogenic hormones/sterols) were found in the bed-sediment samples, with caffeine, cholesterol, indole, para-cresol, and sitosterol detected in all such samples. The number of herbicides detected in discrete-water samples per site had a significant positive relation to TO(rank) (a nonparametric indicator of TO), with significant positive relations between TO(rank) and atrazine concentrations in discrete-water samples and to total hormone/sterol concentration in bed-sediment samples. Such significant correlations do not necessarily imply causation, as these chemical compositions and concentrations likely do not adequately reflect total SMB exposure history, particularly during critical life stages.


Assuntos
Bass/metabolismo , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Animais , Bass/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Controle de Qualidade , Rios
18.
Environ Sci Technol ; 46(5): 2746-54, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22283735

RESUMO

The potential presence of steroid hormones in runoff from sites where biosolids have been used as agricultural fertilizers is an environmental concern. A study was conducted to assess the potential for runoff of seventeen different hormones and two sterols, including androgens, estrogens, and progestogens from agricultural test plots. The field containing the test plots had been applied with biosolids for the first time immediately prior to this study. Target compounds were isolated by solid-phase extraction (water samples) and pressurized solvent extraction (solid samples), derivatized, and analyzed by gas chromatography-tandem mass spectrometry. Runoff samples collected prior to biosolids application had low concentrations of two hormones (estrone <0.8 to 2.23 ng L(-1) and androstenedione <0.8 to 1.54 ng L(-1)) and cholesterol (22.5 ± 3.8 µg L(-1)). In contrast, significantly higher concentrations of multiple estrogens (<0.8 to 25.0 ng L(-1)), androgens (<2 to 216 ng L(-1)), and progesterone (<8 to 98.9 ng L(-1)) were observed in runoff samples taken 1, 8, and 35 days after biosolids application. A significant positive correlation was observed between antecedent rainfall amount and hormone mass loads (runoff). Hormones in runoff were primarily present in the dissolved phase (<0.7-µm GF filter), and, to a lesser extent bound to the suspended-particle phase. Overall, these results indicate that rainfall can mobilize hormones from biosolids-amended agricultural fields, directly to surface waters or redistributed to terrestrial sites away from the point of application via runoff. Although concentrations decrease over time, 35 days is insufficient for complete degradation of hormones in soil at this site.


Assuntos
Agricultura , Cidades , Hormônios/análise , Esgotos/química , Esteroides/análise , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Fracionamento Químico , Meio Ambiente , Material Particulado/química , Chuva
19.
Aquat Toxicol ; 103(3-4): 213-21, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21473848

RESUMO

Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17ß-estradiol, estrone, estriol, and 17α-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent.


Assuntos
Transtornos do Desenvolvimento Sexual/induzido quimicamente , Peixes/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Compostos Benzidrílicos , Colorado , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental , Estradiol/análise , Estradiol/toxicidade , Estrogênios/análise , Estrogênios/toxicidade , Estrona/análise , Estrona/toxicidade , Etinilestradiol/análise , Etinilestradiol/toxicidade , Peixes/metabolismo , Masculino , Fenóis/análise , Fenóis/toxicidade , Razão de Masculinidade , Contagem de Espermatozoides , Testículo/efeitos dos fármacos , Vitelogeninas/metabolismo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...