Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacogenet Genomics ; 15(2): 83-90, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15861032

RESUMO

The concentrative nucleoside transporter CNT2 (SPNT1; SLC28A2) plays a role in the absorption and disposition of naturally occurring nucleosides, as well as nucleoside analog drugs. The aim of the present study was to characterize genetic variation in SLC28A2, the gene encoding CNT2, and to functionally analyse non-synonymous variants of CNT2, as a first step towards understanding whether genetic variation in this nucleoside transporter contributes to variation in response to nucleoside analogs. As part of a larger study, DNA samples from an ethnically diverse population (100 African-Americans, 100 European-Americans, 30 Asians, 10 Mexicans and seven Pacific Islanders) were screened and 10 coding region variants of CNT2 were identified. The non-synonymous variants were then constructed and characterized in Xenopus laevis oocytes. Six non-synonymous variants were identified, and all were able to transport guanosine. The four common variants (>1% in the sample population) were further characterized with the anti-viral nucleoside analog drug ribavirin. No differences were observed among the four common variants in the uptake kinetics of 3H-ribavirin (Km in microM: 35.6+/-9.27 for CNT2-reference, 40.7+/-6.47 for CNT2-P22L, 31.2+/-15.8 for CNT2-S75R, 26.7+/-6.13 for CNT2-S245T and 49.9+/-14.6 for CNT2-F355S). The variant CNT2-F355S exhibited a change in specificity for the naturally occurring nucleosides, inosine and uridine. All non-synonymous variants of CNT2 took up guanosine, and the four variants examined showed no significant difference in ribavirin kinetics. However, CNT2-F355S (3% allele frequency in the African-American sample) was found to alter specificity for naturally occurring nucleosides, which may have implications for nucleoside homeostasis.


Assuntos
Proteínas de Membrana Transportadoras/genética , Polimorfismo Genético , Alelos , Animais , Antivirais/farmacologia , Citoplasma/metabolismo , DNA/metabolismo , Relação Dose-Resposta a Droga , Éxons , Variação Genética , Guanosina/química , Guanosina/metabolismo , Haplótipos , Humanos , Concentração Inibidora 50 , Inosina/química , Cinética , Modelos Genéticos , Proteínas de Transporte de Nucleosídeos/genética , Nucleosídeos/genética , Oócitos/metabolismo , Plasmídeos/metabolismo , Ribavirina/química , Ribavirina/farmacologia , Sensibilidade e Especificidade , Uridina/química , Xenopus laevis
2.
Mol Pharmacol ; 65(3): 512-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14978229

RESUMO

The concentrative nucleoside transporter, CNT1 (SLC28A1), mediates the cellular uptake of naturally occurring pyrimidine nucleosides and many structurally diverse anticancer and antiviral nucleoside analogs. As a first step toward understanding whether genetic variation in CNT1 contributes to variation in the uptake and disposition of clinically used nucleoside analogs, we determined the haplotype structure and functionally analyzed all coding region variants of CNT1 identified in ethnically diverse populations (100 African Americans, 100 European Americans, 30 Asians, 10 Mexican Americans, and 7 Pacific Islanders) (Leabman et al., 2003). A total of 58 coding region haplotypes were identified using PHASE analysis, 44 of which contained at least one amino acid variant. More than half of the coding region haplotypes were population-specific. Using site-directed mutagenesis, 15 protein-altering CNT1 variants, including one amino acid insertion and one base pair (bp) deletion, were constructed and expressed in Xenopus laevis oocytes. All variant transporters took up [3H]thymidine with the exception of CNT1-Ser546Pro, a rare variant, and CNT1-1153del, a single bp deletion found at a frequency of 3% in the African American population. The bp deletion results in a frame-shift followed by a stop-codon. The anticancer nucleoside analog gemcitabine had a reduced affinity for CNT1-Val189Ile (a common CNT1 variant found at a frequency of 26%) compared with reference CNT1 (IC50=13.8 +/- 0.60 microM for CNT1-reference and 23.3 +/- 1.5 microM for CNT1-Val189Ile, p<0.05). These data suggest that common genetic variants of CNT1 may contribute to variation in systemic and intracellular levels of anti-cancer nucleoside analogs.


Assuntos
Variação Genética , Proteínas de Transporte de Nucleosídeos/genética , Sequência de Aminoácidos , Transporte Biológico , DNA Complementar/análise , Haplótipos , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Proteínas de Transporte de Nucleosídeos/química , Proteínas de Transporte de Nucleosídeos/metabolismo , Estrutura Secundária de Proteína
3.
Pflugers Arch ; 447(5): 728-34, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12856181

RESUMO

The SLC28 family consists of three subtypes of sodium-dependent, concentrative nucleoside transporters, CNT1, CNT2, and CNT3 (SLC28A1, SLC28A2, and SLC28A3, respectively), that transport both naturally occurring nucleosides and synthetic nucleoside analogs used in the treatment of various diseases. These subtypes differ in their substrate specificities: CNT1 is pyrimidine-nucleoside preferring, CNT2 is purine-nucleoside preferring, and CNT3 transports both pyrimidine and purine nucleosides. Recent studies have identified key amino acid residues that are determinants of pyrimidine and purine specificity of CNT1 and CNT2. The tissue distributions of the CNTs vary: CNT1 is localized primarily in epithelia, whereas CNT2 and CNT3 have more generalized distributions. Nucleoside transporters in the SLC28 and SLC29 families play critical roles in nucleoside salvage pathways where they mediate the first step of nucleotide biosynthesis. In addition, these transporters work in concert to terminate adenosine signaling. SLC28 family members are crucial determinants of response to a variety of anticancer and antiviral nucleoside analogs, as they modulate the entry of these analogs into target tissues. Further, this family is involved in the absorption and disposition of many nucleoside analogs. Several CNT single nucleoside polymorphisms (SNPs) have been identified, but have yet to be characterized.


Assuntos
Proteínas de Transporte de Nucleosídeos/fisiologia , Nucleosídeos/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico/fisiologia , Humanos , Família Multigênica/fisiologia , Proteínas de Transporte de Nucleosídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...