Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 40(2): 803-813, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28980207

RESUMO

Geophagy, the deliberate consumption of earth materials, is common among humans and animals. However, its etiology and function(s) remain poorly understood. The major hypotheses about its adaptive functions are the supplementation of essential elements and the protection against temporary and chronic gastrointestinal (GI) distress. Because much less work has been done on the protection hypothesis, we investigated whether soil eaten by baboons protected their GI tract from plant secondary metabolites (PSMs) and described best laboratory practices for doing so. We tested a soil that baboons eat/preferred, a soil that baboons never eat/non-preferred, and two clay minerals, montmorillonite a 2:1 clay and kaolinite a 1:1 clay. These were processed using a technique that simulated physiological digestion. The phytochemical concentration of 10 compounds representative of three biosynthetic classes of compounds found in the baboon diet was then assessed with and without earth materials using high-performance liquid chromatography with diode-array detection (HPLC-DAD). The preferred soil was white, contained 1% halite, 45% illite/mica, 14% kaolinite, and 0.8% sand; the non-preferred soil was pink, contained 1% goethite and 1% hematite but no halite, 40% illite/mica, 19% kaolinite, and 3% sand. Polar phenolics and alkaloids were generally adsorbed at levels 10× higher than less polar terpenes. In terms of PSM adsorption, the montmorillonite was more effective than the kaolinite, which was more effective than the non-preferred soil, which was more effective than the preferred soil. Our findings suggest that HPLC-DAD is best practice for the assessment of PSM adsorption of earth materials due to its reproducibility and accuracy. Further, soil selection was not based on adsorption of PSMs, but on other criteria such as color, mouth feel, and taste. However, the consumption of earth containing clay minerals could be an effective strategy for protecting the GI tract from PSMs.


Assuntos
Silicatos de Alumínio/química , Dieta , Comportamento Alimentar/fisiologia , Papio/fisiologia , Pica/fisiopatologia , Plantas/metabolismo , Metabolismo Secundário , Solo , Alcaloides/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Argila , Absorção Intestinal , Fenóis/metabolismo , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta
2.
Sci Rep ; 7(1): 5146, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698629

RESUMO

The expansion of global aquaculture activities is important for the wellbeing of future generations in terms of employment and food security. Rearing animals in open-exchange cages permits the release of organic wastes, some of which ultimately reaches the underlying sediments. The development of rapid, quantitative and objective monitoring techniques is therefore central to the environmentally sustainable growth of the aquaculture industry. Here, we demonstrate that fish farm-derived organic wastes can be readily detected at the seafloor by quantifying sediment phospholipid fatty acids (PLFAs) and their carbon stable isotope signatures. Observations across five farms reveal that farm size and/or distance away from it influence the spatial distribution of the generated organic wastes and their effect on benthic bacterial biomass. Comparison to the isotopic signatures of fish feed-derived PLFAs indicates that 16:0 and 18:1(n-9) are potential biomarkers for fish farm-derived organic wastes. Our results suggest that stable isotope analysis of sediment PLFAs has potential for monitoring the environmental performance of aquaculture activities, particularly given the increasing prevalence of terrigenous organic matter in aquaculture feed stocks because it is isotopically district to marine organic matter.


Assuntos
Ácidos Graxos/análise , Sedimentos Geológicos/análise , Marcação por Isótopo/métodos , Fosfolipídeos/análise , Animais , Isótopos de Carbono/química , Monitoramento Ambiental , Ácidos Graxos/química , Pesqueiros , Fosfolipídeos/química , Água do Mar/análise , Resíduos/análise , Poluentes da Água/análise
3.
Environ Microbiol ; 17(6): 2064-75, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25580878

RESUMO

Geoactive soil fungi were investigated for phosphatase-mediated uranium precipitation during growth on an organic phosphorus source. Aspergillus niger and Paecilomyces javanicus were grown on modified Czapek-Dox medium amended with glycerol 2-phosphate (G2P) as sole P source and uranium nitrate. Both organisms showed reduced growth on uranium-containing media but were able to extensively precipitate uranium and phosphorus-containing minerals on hyphal surfaces, and these were identified by X-ray powder diffraction as uranyl phosphate species, including potassium uranyl phosphate hydrate (KPUO6 .3H2 O), meta-ankoleite [(K1.7 Ba0.2 )(UO2 )2 (PO4 )2 .6H2 O], uranyl phosphate hydrate [(UO2 )3 (PO4 )2 .4H2 O], meta-ankoleite (K(UO2 )(PO4 ).3H2 O), uramphite (NH4 UO2 PO4 .3H2 O) and chernikovite [(H3 O)2 (UO2 )2 (PO4 )2 .6H2 O]. Some minerals with a morphology similar to bacterial hydrogen uranyl phosphate were detected on A. niger biomass. Geochemical modelling confirmed the complexity of uranium speciation, and the presence of meta-ankoleite, uramphite and uranyl phosphate hydrate between pH 3 and 8 closely matched the experimental data, with potassium as the dominant cation. We have therefore demonstrated that fungi can precipitate U-containing phosphate biominerals when grown with an organic source of P, with the hyphal matrix serving to localize the resultant uranium minerals. The findings throw further light on potential fungal roles in U and P biogeochemistry as well as the application of these mechanisms for element recovery or bioremediation.


Assuntos
Aspergillus niger/metabolismo , Paecilomyces/metabolismo , Fosfatos/metabolismo , Compostos de Urânio/metabolismo , Biodegradação Ambiental , Glicerofosfatos/metabolismo , Minerais/metabolismo , Solo/química , Microbiologia do Solo , Difração de Raios X
4.
Environ Microbiol ; 17(6): 2018-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25181352

RESUMO

Saprotrophic fungi were investigated for their bioweathering effects on the vanadium- and lead-containing insoluble apatite group mineral, vanadinite [Pb5 (VO4 )3 Cl]. Despite the insolubility of vanadinite, fungi exerted both biochemical and biophysical effects on the mineral including etching, penetration and formation of new biominerals. Lead oxalate was precipitated by Aspergillus niger during bioleaching of natural and synthetic vanadinite. Some calcium oxalate monohydrate (whewellite) was formed with natural vanadinite because of the presence of associated ankerite [Ca(Fe(2+) ,Mg)(CO3 )2 ]. Aspergillus niger also precipitated lead oxalate during growth in the presence of lead carbonate, vanadium(V) oxide and ammonium metavanadate, while abiotic tests confirmed the efficacy of oxalic acid in solubilizing vanadinite and precipitating lead as oxalate. Geochemical modelling confirmed the complexity of vanadium speciation, and the significant effect of oxalate. Oxalate-vanadium complexes markedly reduced the vanadinite stability field, with cationic lead(II) and lead oxalate also occurring. In all treatments and geochemical simulations, no other lead vanadate, or vanadium minerals were detected. This research highlights the importance of oxalate in vanadinite bioweathering and suggests a general fungal transformation of lead-containing apatite group minerals (e.g. vanadinite, pyromorphite, mimetite) by this mechanism. The findings are also relevant to remedial treatments for lead/vanadium contamination, and novel approaches for vanadium recovery.


Assuntos
Apatitas/metabolismo , Aspergillus niger/metabolismo , Oxalato de Cálcio/metabolismo , Chumbo/metabolismo , Minerais/metabolismo , Vanádio/metabolismo , Aspergillus niger/efeitos dos fármacos , Biodegradação Ambiental , Chumbo/química , Óxidos/metabolismo , Fosfatos/metabolismo , Vanádio/química
5.
PLoS One ; 8(5): e64940, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741430

RESUMO

Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs) all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management.


Assuntos
Cobre/química , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Microbiota , Anfípodes/efeitos dos fármacos , Animais , Biomassa , Cobre/toxicidade , Ecossistema , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...