Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 1036-1054, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35157577

RESUMO

Humans drive in a holistic fashion which entails, in particular, understanding dynamic road events and their evolution. Injecting these capabilities in autonomous vehicles can thus take situational awareness and decision making closer to human-level performance. To this purpose, we introduce the ROad event Awareness Dataset (ROAD) for Autonomous Driving, to our knowledge the first of its kind. ROAD is designed to test an autonomous vehicle's ability to detect road events, defined as triplets composed by an active agent, the action(s) it performs and the corresponding scene locations. ROAD comprises videos originally from the Oxford RobotCar Dataset, annotated with bounding boxes showing the location in the image plane of each road event. We benchmark various detection tasks, proposing as a baseline a new incremental algorithm for online road event awareness termed 3D-RetinaNet. We also report the performance on the ROAD tasks of Slowfast and YOLOv5 detectors, as well as that of the winners of the ICCV2021 ROAD challenge, which highlight the challenges faced by situation awareness in autonomous driving. ROAD is designed to allow scholars to investigate exciting tasks such as complex (road) activity detection, future event anticipation and continual learning. The dataset is available at https://github.com/gurkirt/road-dataset; the baseline can be found at https://github.com/gurkirt/3D-RetinaNet.

2.
Sensors (Basel) ; 22(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336584

RESUMO

This work proposes a novel virtual reality system which makes use of wearable sensors for testing and validation of cooperative workplaces from the ergonomic point of view. The main objective is to show, in real time, the ergonomic evaluation based on a muscular activity analysis within the immersive virtual environment. The system comprises the following key elements: a robotic simulator for modeling the robot and the working environment; virtual reality devices for human immersion and interaction within the simulated environment; five surface electromyographic sensors; and one uniaxial accelerometer for measuring the human ergonomic status. The methodology comprises the following steps: firstly, the virtual environment is constructed with an associated immersive tutorial for the worker; secondly, an ergonomic toolbox is developed for muscular analysis. This analysis involves multiple ergonomic outputs: root mean square for each muscle, a global electromyographic score, and a synthetic index. They are all visualized in the immersive environment during the execution of the task. To test this methodology, experimental trials are conducted on a real use case in a human-robot cooperative workplace typical of the automotive industry. The results showed that the methodology can effectively be applied in the analysis of human-robot interaction, to endow the workers with self-awareness with respect to their physical conditions.


Assuntos
Robótica , Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Ergonomia , Humanos , Local de Trabalho
3.
Sensors (Basel) ; 20(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023976

RESUMO

This paper presents IART, a novel inertial wearable system for automatic detection of infringements and analysis of sports performance in race walking. IART algorithms are developed from raw inertial measurements collected by a single sensor located at the bottom of the vertebral column (L5-S1). Two novel parameters are developed to estimate infringements: loss of ground contact time and loss of ground contact step classification; three classic parameters are indeed used to estimate performance: step length ratio, step cadence, and smoothness. From these parameters, five biomechanical indices customized for elite athletes are derived. The experimental protocol consists of four repetitions of a straight path of 300 m on a long-paved road, performed by nine elite athletes. Over a total of 1620 steps (54 sequences of 30 steps each), the average accuracy of correct detection of loss of ground contact events is equal to 99%, whereas the correct classification of the infringement is equal to 87% for each step sequence, with a 92% of acceptable classifications. A great emphasis is dedicated on the user-centered development of IART: an intuitive radar chart representation is indeed developed to provide practical usability and interpretation of IART indices from the athletes, coaches, and referees perspectives. The results of IART, in terms of accuracy of its indices and usability from end-users, are encouraging for its usage as tool to support athletes and coaches in training and referees in real competitions.


Assuntos
Desempenho Atlético/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Atletas , Fenômenos Biomecânicos , Humanos , Masculino
4.
Soft Robot ; 6(6): 790-811, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30481112

RESUMO

Mathematical modeling of soft robots is complicated by the description of the continuously deformable three-dimensional shape that they assume when subjected to external loads. In this article we present the deformation space formulation for soft robots dynamics, developed using a finite element approach. Starting from the Cosserat rod theory formulated on a Lie group, we derive a discrete model using a helicoidal shape function for the spatial discretization and a geometric scheme for the time integration of the robot shape configuration. The main motivation behind this work is the derivation of accurate and computational efficient models for soft robots. The model takes into account bending, torsion, shear, and axial deformations due to general external loading conditions. It is validated through analytic and experimental benchmark. The results demonstrate that the model matches experimental positions with errors <1% of the robot length. The computer implementation of the model results in SimSOFT, a dynamic simulation environment for design, analysis, and control of soft robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...