Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Coast Manage ; 49(5): 510-531, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36204115

RESUMO

Ocean and coastal acidification (OCA) present a unique set of sustainability challenges at the human-ecological interface. Extensive biogeochemical monitoring that can assess local acidification conditions, distinguish multiple drivers of changing carbonate chemistry, and ultimately inform local and regional response strategies is necessary for successful adaptation to OCA. However, the sampling frequency and cost-prohibitive scientific equipment needed to monitor OCA are barriers to implementing the widespread monitoring of dynamic coastal conditions. Here, we demonstrate through a case study that existing community-based water monitoring initiatives can help address these challenges and contribute to OCA science. We document how iterative, sequential outreach, workshop-based training, and coordinated monitoring activities through the Northeast Coastal Acidification Network (a) assessed the capacity of northeastern United States community science programs and (b) engaged community science programs productively with OCA monitoring efforts. Our results (along with the companion manuscript) indicate that community science programs are capable of collecting robust scientific information pertinent to OCA and are positioned to monitor in locations that would critically expand the coverage of current OCA research. Furthermore, engaging community stakeholders in OCA science and outreach enabled a platform for dialogue about OCA among other interrelated environmental concerns and fostered a series of co-benefits relating to public participation in resource and risk management. Activities in support of community science monitoring have an impact not only by increasing local understanding of OCA but also by promoting public education and community participation in potential adaptation measures.

2.
Limnol Oceanogr ; 65(10): 2337-2351, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34121771

RESUMO

Ocean uptake of carbon dioxide (CO2) is causing changes in carbonate chemistry that affect calcification in marine organisms. In coastal areas, this CO2-enriched seawater mixes with waters affected by seasonal degradation of organic material loaded externally from watersheds or produced as a response to nutrient enrichment. As a result, coastal bivalves often experience strong seasonal changes in carbonate chemistry. In some cases, these changes may resemble those experienced by aquacultured bivalves during translocation activities. We mimicked these changes by exposing juvenile hard clams (500 µm, Mercenaria mercenaria) to pCO2 in laboratory upwellers at levels resembling those already reported for northeastern US estuaries (mean upweller pCO2 = 773, 1274, and 1838 µatm) and then transplanting to three grow-out sites along an expected nutrient gradient in Narragansett Bay, RI (154 bags of 100 clams). Prior to the field grow-out, clams exposed to elevated pCO2 exhibited larger shells but lower dry weight per unit volume (dw/V). However, percent increase in dw/V was highest for this group during the 27-day field grow-out, suggesting that individuals with low dw/V after the laboratory treatment accelerated accumulation of dw/V when they were transferred to the bay. Treatments also appeared to affect shell mineral structure and condition of digestive diverticula. Although treatment effects diminished during the field grow-out, clams that were pre-exposed for several weeks to high pCO2 would likely have been temporarily vulnerable to predation or other factors that interact with shell integrity. This would be expected to reduce population recovery from short-term exposures to high pCO2.

3.
Mar Pollut Bull ; 150: 110745, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31784266

RESUMO

An experiment was conducted to examine the fractionation of nitrogen stable isotopes in a continuous culture system containing field collected estuarine phytoplankton and blue mussels, Mytilus edulis. Nitrate and phosphate were added to culture vessels at concentrations above ambient levels and nitrogen isotope ratios (δ15N) were measured in particulate matter (PM) and blue mussels over the course of the 15-day experiment. The added nutrients resulted in large productivity and chlorophyll increases in the system. Study results indicate that rapid and significant nitrogen isotope fractionation can occur during incorporation by phytoplankton grown under conditions of excess dissolved inorganic nitrogen, as shown by δ15N values depleted by as much as 9‰ in PM from the higher nutrient treatments. These lower δ15N values were also reflected in mussels exposed to culture vessels effluents. Therefore, nitrogen concentration needs to be considered when using δ15N values in biota as indicators of anthropogenic nitrogen inputs.


Assuntos
Monitoramento Ambiental , Mytilus edulis , Nitrogênio/análise , Poluentes da Água/análise , Animais , Aquicultura , Isótopos de Nitrogênio , Fitoplâncton
4.
Front Mar Sci ; 5(43): 1-15, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29552559

RESUMO

Coastal ecosystems are inherently complex and potentially adaptive as they respond to changes in nutrient loads and climate. We documented the role that carbon stable isotope (δ13C) measurements could play in understanding that adaptation with a series of three Ecostat (i.e., continuous culture) experiments. We quantified linkages among δ13C, nutrients, carbonate chemistry, primary, and secondary production in temperate estuarine waters. Experimental culture vessels (9.1 L) containing 33% whole and 67% filtered (0.2 µm) seawater were amended with dissolved inorganic nitrogen (N) and phosphorous (P) in low (3 vessels; 5 µM N, 0.3 µM P), moderate (3 vessels; 25 µM N, 1.6 µM P), and high amounts (3 vessels; 50 µM N, 3.1 µM P). The parameters necessary to calculate carbonate chemistry, chlorophyll-a concentrations, and particulate δ13C values were measured throughout the 14 day experiments. Outflow lines from the experimental vessels fed 250 ml containers seeded with juvenile blue mussels (Mytilus edulis). Mussel subsamples were harvested on days 0, 7, and 14 and their tissues were analyzed for δ13C values. We consistently observed that particulate δ13C values were positively correlated with chlorophyll-a, carbonate chemistry, and to changes in the ratio of bicarbonate to dissolved carbon dioxide ( [Formula: see text] :CO2). While the relative proportion of [Formula: see text] to CO2 increased over the 14 days, concentrations of each declined, reflecting the drawdown of carbon associated with enhanced production. Plankton δ13C values, like chlorophyll-a concentrations, increased over the course of each experiment, with the greatest increases in the moderate and high treatments. Trends in δ13C over time were also observed in the mussel tissues. Despite ecological variability and different plankton abundances the experiments consistently demonstrated how δ13C values in primary producers and consumers reflected nutrient availability, via its impact on carbonate chemistry. We applied a series of mixed-effects models to observational data from Narragansett Bay and the model that included in situ δ13C and percent organic matter was the best predictor of [ [Formula: see text]]. In temperate, plankton-dominated estuaries, δ13C values in plankton and filter feeders reflect net productivity and are a valuable tool to understand the production conditions under which the base of the food chain was formed.

5.
J Therm Biol ; 64: 26-34, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28166942

RESUMO

Temperature strongly affects performance in ectotherms. As ocean warming continues, performance of marine species will be impacted. Many studies have focused on how warming will impact physiology, life history, and behavior, but few studies have investigated how ecological and behavioral traits of organisms will affect their response to changing thermal environments. Here, we assessed the thermal tolerances and thermal sensitivity of swimming performance of two sympatric mysid shrimp species of the Northwest Atlantic. Neomysis americana and Heteromysis formosa overlap in habitat and many aspects of their ecological niche, but only N. americana exhibits vertical migration. In temperate coastal ecosystems, temperature stratification of the water column exposes vertical migrators to a wider range of temperatures on a daily basis. We found that N. americana had a significantly lower critical thermal minimum (CTmin) and critical thermal maximum (CTmax). However, both mysid species had a buffer of at least 4°C between their CTmax and the 100-year projection for mean summer water temperatures of 28°C. Swimming performance of the vertically migrating species was more sensitive to temperature variation, and this species exhibited faster burst swimming speeds. The generalist performance curve of H. formosa and specialist curve of N. americana are consistent with predictions based on the exposure of each species to temperature variation such that higher within-generation variability promotes specialization. However, these species violate the assumption of the specialist-generalist tradeoff in that the area under their performance curves is not constant. Our results highlight the importance of incorporating species-specific responses to temperature based on the ecology and behavior of organisms into climate change prediction models.


Assuntos
Aclimatação , Temperatura Corporal , Crustáceos/fisiologia , Aquecimento Global , Natação , Animais , Temperatura Alta , Oceanos e Mares , Especificidade da Espécie
6.
Estuar Coast Shelf Sci ; 190: 40-49, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30820069

RESUMO

The effects of ongoing changes in ocean carbonate chemistry on plankton ecology have important implications for food webs and biogeochemical cycling. However, conflicting results have emerged regarding species-specific responses to pCO2 enrichment and thus community responses have been difficult to predict. To assess community level effects (e.g., production) of altered carbonate chemistry, studies are needed that capitalize on the benefits of controlled experiments but also retain features of intact ecosystems that may exacerbate or ameliorate the effects observed in single-species or single cohort experiments. We performed incubations of natural plankton communities from Narragansett Bay, RI, USA in winter at ambient bay temperatures (5-13 °C), light and nutrient concentrations under three levels of controlled and constant CO2 concentrations, simulating past, present and future conditions at mean pCO2 levels of 224, 361, and 724 µatm respectively. Samples for carbonate analysis, chlorophyll a, plankton size-abundance, and plankton species composition were collected daily and phytoplankton growth rates in three different size fractions (<5, 5-20, and >20 µm) were measured at the end of the 7-day incubation period. Community composition changed during the incubation period with major increases in relative diatom abundance, which were similar across pCO2 treatments. At the end of the experiment, 24-hr growth responses to pCO2 levels varied as a function of cell size. The smallest size fraction (<5 µm) grew faster at the elevated pCO2 level. In contrast, the 5-20 µm size fraction grew fastest in the Present treatment and there were no significant differences in growth rate among treatments in the > 20 µm size fraction. Cell size distribution shifted toward smaller cells in both the Past and Future treatments but remained unchanged in the Present treatment. Similarity in Past and Future treatments for cell size distribution and growth rate (5-20 µm size fraction) illustrate non-monotonic effects of increasing pCO2 on ecological indicators and may be related to opposing physiological effects of high CO2 and low pH both within and among species. Interaction of these effects with other factors (e.g., nutrients, light, temperature, grazing, initial species composition) may explain variability among published studies. The absence of clear treatment-specific effects at the community level suggest that extrapolation of species-specific responses or experiments with only present day and future pCO2 treatments levels would produce misleading predictions of ocean acidification impacts on plankton production.

7.
Estuaries Coast ; 39(2): 311-332, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27721675

RESUMO

Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a "theory of everything" for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.

8.
Parasit Vectors ; 7: 292, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24965139

RESUMO

BACKGROUND: The use of animal host-targeted pesticide application to control blacklegged ticks, which transmit the Lyme disease bacterium between wildlife hosts and humans, is receiving increased attention as an approach to Lyme disease risk management. Included among the attractive features of host-targeted approaches is the reduced need for broad-scale pesticide usage. In the eastern USA, one of the best-known of these approaches is the corn-baited "4-poster" deer feeding station, so named because of the four pesticide-treated rollers that surround the bait troughs. Wildlife visitors to these devices receive an automatic topical application of acaricide, which kills attached ticks before they can reproduce. We conducted a 5-year controlled experiment to estimate the effects of 4-poster stations on tick populations in southeastern Massachusetts, where the incidence of Lyme disease is among the highest in the USA. METHODS: We deployed a total of forty-two 4-posters among seven treatment sites and sampled for nymph and adult ticks at these sites and at seven untreated control sites during each year of the study. Study sites were distributed among Cape Cod, Martha's Vineyard, and Nantucket. The density of 4-poster deployment was lower than in previous 4-poster studies and resembled or possibly exceeded the levels of effort considered by county experts to be feasible for Lyme disease risk managers. RESULTS: Relative to controls, blacklegged tick abundance at treated sites was reduced by approximately 8.4%, which is considerably less than in previous 4-poster studies. CONCLUSIONS: In addition to the longer duration and greater replication in our study compared to others, possible but still incomplete explanations for the smaller impact we observed include the lower density of 4-poster deployment as well as landscape and mammalian community characteristics that may complicate the ecological relationship between white-tailed deer and blacklegged tick populations.


Assuntos
Cervos/parasitologia , Inseticidas/farmacologia , Ixodes/efeitos dos fármacos , Doença de Lyme/transmissão , Permetrina/farmacologia , Infestações por Carrapato/veterinária , Administração Tópica , Animais , Animais Selvagens , Inseticidas/administração & dosagem , Doença de Lyme/prevenção & controle , Massachusetts/epidemiologia , Permetrina/administração & dosagem , Controle de Ácaros e Carrapatos/métodos , Infestações por Carrapato/prevenção & controle , Fatores de Tempo
9.
BMC Evol Biol ; 10: 205, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20609254

RESUMO

BACKGROUND: When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater) and stressful conditions (diluted seawater). The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. RESULTS: Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation between AFLP diversity and population fitness overall; however, AFLP markers performed poorly at detecting modest but consequential losses of genetic diversity. High diversity lines in the stressful environment showed some evidence of relative improvement as the experiment progressed while the low diversity lines did not. CONCLUSIONS: The combined effects of reduced average fitness and increased variability contributed to increased extinction rates for very low diversity populations. More modest losses of genetic diversity resulted in measurable decreases in population fitness; AFLP markers did not always detect these losses. However when AFLP markers indicated lost genetic diversity, these losses were associated with reduced population fitness.


Assuntos
Crustáceos/genética , Aptidão Genética , Variação Genética , Genética Populacional , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Meio Ambiente , Genótipo , Análise de Sequência de DNA , Estresse Fisiológico
10.
Ecotoxicology ; 14(1-2): 283-93, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15931973

RESUMO

Ecological risk assessments for mercury (Hg) require measured and modeled information on exposure and effects. While most of this special issue focuses on the former, i.e., distribution and fate of Hg within aquatic food webs, this paper describes an approach to predict the effects of dietary methylmercury (CH3Hg) on populations of piscivorous birds. To demonstrate this approach, the U.S. Environmental Protection Agency's National Health and Environmental Effects Research Laboratory (U.S. EPA NHEERL) is working cooperatively with environmental and conservation organizations to develop models to predict CH3Hg effects on populations of the common loon, Gavia immer. Specifically, a biologically-based toxicokinetic model is being used to extrapolate CH3Hg effects on the reproduction of a tested bird species, the American kestrel (Falco sparverius), to the loon. Population models are being used to incorporate stressor effects on survival and reproduction into projections of loon population effects. Finally, habitat and spatially-explicit population models are being used to project results spatially, assess the relative importance of CH3Hg and non-chemical stressors, and produce testable predictions of the effects of biologically-available Hg on loon populations. This stepwise process provides an integrated approach to estimate the impact on wildlife populations of regulations that limit atmospherically-distributed Hg, and to develop risk-based population-level regulatory criteria.


Assuntos
Animais Selvagens , Poluentes Ambientais/intoxicação , Compostos de Metilmercúrio/intoxicação , Aves Predatórias , Animais , Atmosfera , Dieta , Meio Ambiente , Feminino , Previsões , Masculino , Dinâmica Populacional , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...