Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Data ; 10(1): 100, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797273

RESUMO

The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount of in situ data to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophyll a, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.

3.
Ecol Appl ; 27(2): 632-643, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27859882

RESUMO

Understanding how and why lakes vary and respond to different drivers through time and space is needed to understand, predict, and manage freshwater quality in an era of rapidly changing land use and climate. Water clarity regulates many characteristics of aquatic ecosystems and is responsive to watershed features, making it a sentinel of environmental change. However, whether precipitation alters the relative importance of features that influence lake water clarity or the spatial scales at which they operate is unknown. We used a data set of thousands of northern temperate lakes and asked (1) How does water clarity differ between a very wet vs. dry year? (2) Does the relative importance of different watershed features, or the spatial extent at which they are measured, vary between wet and dry years? (3) What lake and watershed characteristics regulate long-term water clarity trends? Among lakes, water clarity was reduced and less variable in the wet year than in the dry year; furthermore, water clarity was reduced much more in high-clarity lakes during the wet year than in low-clarity lakes. Climate, land use/land cover, and lake morphometry explained most variance in clarity among lakes in both years, but the spatial scales at which some features were important differed between the dry and wet years. Watershed percent agriculture was most important in the dry year, whereas riparian zone percent agriculture (around each lake and upstream features) was most important in the wet year. Between 1991 and 2012, water clarity declined in 23% of lakes and increased in only 6% of lakes. Conductance influenced the direction of temporal trend (clarity declined in lakes with low conductance), whereas the proportion of watershed wetlands, catchment-to-lake-area ratio, and lake maximum depth interacted with antecedent precipitation. Many predictors of water clarity, such as lake depth and landscape position, are features that cannot be readily managed. Given trends of increasing precipitation, eliminating riparian zone agriculture or keeping it <10% of area may be an effective option to maintain or improve water clarity.


Assuntos
Secas , Lagos/análise , Qualidade da Água , Chuva , Neve , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...