Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 99(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34748623

RESUMO

Three penetrating captive bolt (PCB) placements were tested on cadaver heads from swine with estimated body weight (BW) >200 kg (sows = 232.9 ± 4.1 kg; boars = 229.3 ± 2.6 kg). The objectives were to determine tissue depth, cross-sectional brain area, visible brain damage (BD), regions of BD, and bolt-brain contact; and determine relationships between external head dimensions and tissue depth at each placement. A Jarvis PAS-Type P 0.25R PCB with a Long Stunning Rod Nosepiece Assembly and 3.5 g power loads was used at the following placements on heads from 111 sows and 46 boars after storage at 2 to 4 °C for ~62 h before treatment: FRONTAL (F)-3.5 cm superior to the optic orbits at midline, TEMPORAL (T)-at the depression posterior to the lateral canthus of the eye within the plane between the lateral canthus and the base of the ear, or BEHIND EAR (BE)-directly caudal to the pinna of the ear on the same plane as the eyes and targeting the middle of the opposite eye. For sows, the bolt path was in the plane of the brain for 42/42 (100%, 95% confidence interval [CI]: 91.6% to 100.0%) F heads, 39/40 (97.5%, 95% CI: 86.8% to 99.9%) T heads, and 34/39 (87.5%, 95% CI: 72.6% to 95.7%) BE heads; for the heads that could reliably be assessed for BD damage was detected in 25/26 (96.2%, 95% CI: 80.4% to 99.9%) F heads, 24/35 (68.6%, 95% CI: 50.7% to 83.2%) T heads, and 5/40 (12.5%, 95% CI: 4.2% to 26.8%) BE heads. For boars, the bolt path was in the plane of the brain for 17/17 (100.0%, 95% CI: 80.5% to 100.0%) F heads, 18/18 (100.0%, 95% CI: 81.5% to 100.0%) T heads, and 14/14 (100.0%, 95% CI: 76.8% to 100.0%) BE heads; damage was detected in 11/12 (91.7%, 95% CI: 61.5% to 99.8%) F heads, 2/15 (13.3%, 95% CI: 1.7% to 40.5%) T heads, and 7/14 (50.0%, 95% CI: 23.0% to 77.0%) BE heads. Tissue depth was reported as mean ± standard error followed by 95% one-sided upper reference limit (URL). For sows, total tissue thickness was different (P < 0.05) between placements (F: 52.7 ± 1.0 mm, URL: 64.1 mm; T: 69.8 ± 1.4 mm, URL: 83.9 mm; BE: 89.3 ± 1.5 mm, URL: 103.4 mm). In boars, total tissue thickness was different (P < 0.05) between placements (F: 41.2 ± 2.1 mm, URL: 56.3 mm; T: 73.2 ± 1.5 mm, URL: 83.4 mm; BE: 90.9 ± 3.5 mm, URL: 113.5 mm). For swine > 200 kg BW, F placement may be more effective than T or BE due to less soft tissue thickness, which may reduce concussive force. The brain was within the plane of bolt travel for 100% of F heads with BD for 96.2% and 91.7% of F sow and boar heads, respectively.


Assuntos
Sus scrofa , Doenças dos Suínos , Animais , Peso Corporal , Cadáver , Estudos Transversais , Feminino , Cabeça , Masculino , Suínos
2.
Transl Anim Sci ; 5(1): txab001, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569541

RESUMO

The objective of this project was to determine the impact of cooling on the soft tissue thickness, cranial thickness, and cross-sectional brain area of cadaver heads from market pigs. Documenting the effect of cooling on tissue dimensions of swine heads is valuable and important for future investigations of physical stunning and euthanasia methods that use cadaver heads. Scalded and dehaired cadaver heads with intact jowls were sourced from market pigs stunned with CO2 gas. After transport to the data collection location, a penetrating captive bolt (PCB) shot (Jarvis Model PAS-Type P 0.25R Caliber Captive Bolt Pistol with Medium Rod Assembly and Blue Powder Cartridges) was applied in the frontal position. Following PCB application, each head (n = 36) underwent an UNCHILLED treatment followed by CHILLED treatment. The UNCHILLED treatment involved images collected immediately after splitting each head along the bolt path, and the CHILLED treatment involved images of the same heads after storage in a walk-in cooler for 24 h at 2 to 4°C. All measurements for each treatment were collected from images of the heads on the plane of the bolt path immediately prior to and immediately after the refrigeration treatment. Measurements were performed by two observers. Across all measurements, mean interobserver coefficient of variation was 11.3 ± 0.6%. The soft tissue caudal to the bolt path was different (P = 0.0120) between treatments (CHILLED: 6.4 ± 0.2 mm; UNCHILLED: 7.2 ± 0.2 mm). The soft tissue thickness rostral to the bolt path was different (P = 0.0378) between treatments (CHILLED: 5.5 ± 0.2 mm; UNCHILLED: 6.1 ± 0.2 mm). Cranial thickness caudal to the bolt path was not different (P = 0.8659; CHILLED: 18.1 ± 0.6 mm; UNCHILLED: 18.3 ± 0.6 mm), nor was there a significant difference (P = 0.2593) in cranial thickness rostral to the bolt path between treatments (CHILLED: 16.2 ± 0.6 mm; UNCHILLED: 15.2 ± 0.6 mm). Cross-sectional brain area did not differ (P = 0.0737; CHILLED: 3633.4 ± 44.1 mm; UNCHILLED: 3519.9 ± 44.1 mm). A correction factor of 1.12 was determined from this study for cases where estimation of UNCHILLED soft tissue thickness from CHILLED soft tissue thickness is necessary.

3.
Front Vet Sci ; 4: 22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293560

RESUMO

Yawning is a widely recognized behavior in mammalian species. One would expect that elephants yawn, although to our knowledge, no one has reported observations of yawning in any species of elephant. After confirming a behavioral pattern matching the criteria of yawning in two Asian elephants (Elephas maximus) in a zoological setting, this study was pursued with nine captive African elephants (Loxodonta africana) at a private reserve in the Western Cape, South Africa, the Knysna Elephant Park. Observations were made in June-September and in December. In the daytime, handlers managed seven of the elephants for guided interactions with visitors. At night, all elephants were maintained in a large enclosure with six having limited outdoor access. With infrared illumination, the elephants were continuously recorded by video cameras. During the nights, the elephants typically had 1-3 recumbent sleeping/resting bouts, each lasting 1-2 h. Yawning was a regular occurrence upon arousal from a recumbency, especially in the final recumbency of the night. Yawning was significantly more frequent in some elephants. Yawning was rare during the daytime and during periods of standing around in the enclosure at night. In six occurrences of likely contagious yawning, one elephant yawned upon seeing another elephant yawning upon arousal from a final recumbency; we recorded the sex and age category of the participants. The generality of yawning in both African and Asian elephants in other environments was documented in video recordings from 39 zoological facilities. In summary, the study provides evidence that yawning does occur in both African and Asian elephants, and in African elephants, yawning was particularly associated with arousal from nighttime recumbencies.

4.
PLoS One ; 11(7): e0152490, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27414654

RESUMO

The management of African (Loxodonta africana) and Asian (Elephas maximus) elephants in zoos involves a range of practices including feeding, exercise, training, and environmental enrichment. These practices are necessary to meet the elephants' nutritional, healthcare, and husbandry needs. However, these practices are not standardized, resulting in likely variation among zoos as well as differences in the way they are applied to individual elephants within a zoo. To characterize elephant management in North America, we collected survey data from zoos accredited by the Association of Zoos and Aquariums, developed 26 variables, generated population level descriptive statistics, and analyzed them to identify differences attributable to sex and species. Sixty-seven zoos submitted surveys describing the management of 224 elephants and the training experiences of 227 elephants. Asian elephants spent more time managed (defined as interacting directly with staff) than Africans (mean time managed: Asians = 56.9%; Africans = 48.6%; p<0.001), and managed time increased by 20.2% for every year of age for both species. Enrichment, feeding, and exercise programs were evaluated using diversity indices, with mean scores across zoos in the midrange for these measures. There were an average of 7.2 feedings every 24-hour period, with only 1.2 occurring during the nighttime. Feeding schedules were predictable at 47.5% of zoos. We also calculated the relative use of rewarding and aversive techniques employed during training interactions. The population median was seven on a scale from one (representing only aversive stimuli) to nine (representing only rewarding stimuli). The results of our study provide essential information for understanding management variation that could be relevant to welfare. Furthermore, the variables we created have been used in subsequent elephant welfare analyses.


Assuntos
Criação de Animais Domésticos/normas , Bem-Estar do Animal/normas , Animais de Zoológico , Elefantes/fisiologia , Comportamento Alimentar/fisiologia , Abrigo para Animais/normas , Condicionamento Físico Animal/fisiologia , Animais , Meio Ambiente , Feminino , Masculino , América do Norte , Meio Social
5.
PLoS One ; 11(7): e0144276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27416071

RESUMO

Stereotypic behavior is an important indicator of compromised welfare. Zoo elephants are documented to perform stereotypic behavior, but the factors that contribute to performance have not been systematically assessed. We collected behavioral data on 89 elephants (47 African [Loxodonta africana], 42 Asian [Elephas maximus]) at 39 North American zoos during the summer and winter. Elephants were videoed for a median of 12 daytime hours per season. A subset of 32 elephants (19 African, 13 Asian) was also observed live for a median of 10.5 nighttime hours. Percentages of visible behavior scans were calculated from five minute instantaneous samples. Stereotypic behavior was the second most commonly performed behavior (after feeding), making up 15.5% of observations during the daytime and 24.8% at nighttime. Negative binomial regression models fitted with generalized estimating equations were used to determine which social, housing, management, life history, and demographic variables were associated with daytime and nighttime stereotypic behavior rates. Species was a significant risk factor in both models, with Asian elephants at greater risk (daytime: p<0.001, Risk Ratio = 4.087; nighttime: p<0.001, Risk Ratio = 8.015). For both species, spending time housed separately (p<0.001, Risk Ratio = 1.009), and having experienced inter-zoo transfers (p<0.001, Risk Ratio = 1.175), increased the risk of performing higher rates of stereotypy during the day, while spending more time with juvenile elephants (p<0.001, Risk Ratio = 0.985), and engaging with zoo staff reduced this risk (p = 0.018, Risk Ratio = 0.988). At night, spending more time in environments with both indoor and outdoor areas (p = 0.013, Risk Ratio = 0.987) and in larger social groups (p = 0.039, Risk Ratio = 0.752) corresponded with reduced risk of performing higher rates of stereotypy, while having experienced inter-zoo transfers (p = 0.033, Risk Ratio = 1.115) increased this risk. Overall, our results indicate that factors related to the social environment are most influential in predicting elephant stereotypic behavior rates.


Assuntos
Bem-Estar do Animal , Animais de Zoológico/psicologia , Comportamento Animal/fisiologia , Elefantes/psicologia , Meio Social , Comportamento Estereotipado/fisiologia , Fatores Etários , Animais , Ritmo Circadiano/fisiologia , Feminino , Masculino , Atividade Motora/fisiologia , Estações do Ano , Especificidade da Espécie , Estados Unidos
6.
Anim Cogn ; 16(3): 459-69, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23238635

RESUMO

Social learning is a more efficient method of information acquisition and application than trial and error learning and is prevalent across a variety of animal taxa. Social learning is assumed to be important for elephants, but evidence in support of that claim is mostly anecdotal. Using a herd of six adult female African bush elephants (Loxodonta africana africana) at the San Diego Zoo's Safari Park, we evaluated whether viewing a conspecific's interactions facilitated learning of a novel task. The tasks used feeding apparatus that could be solved in one of two distinct ways. Contrary to our hypothesis, the method the demonstrating animal used did not predict the method used by the observer. However, we did find evidence of social learning: After watching the model, subjects spent a greater percentage of their time interacting with the apparatus than they did in unmodeled trials. These results suggest that the demonstrations of a model may increase the motivation of elephants to explore novel foraging tasks.


Assuntos
Elefantes/psicologia , Comportamento Imitativo , Aprendizagem , Comportamento Social , Animais , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...