Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Chem Rev ; 124(14): 8740-8786, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38959423

RESUMO

In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.


Assuntos
Aminoácidos , Biocatálise , Aminoácidos/metabolismo , Aminoácidos/química , Aminoácidos/genética , Código Genético , Engenharia de Proteínas , Enzimas/metabolismo , Enzimas/genética , Enzimas/química
2.
Cancer Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885318

RESUMO

Increasing evidence supports the interplay between oncogenic mutations and immune escape mechanisms. Strategies to counteract the immune escape mediated by oncogenic signaling could provide improved therapeutic options for patients with various malignancies. As mutant calreticulin (CALR) is a common driver of myeloproliferative neoplasms (MPN), we analyzed the impact of oncogenic CALRdel52 on the bone marrow (BM) microenvironment in MPN. Single-cell RNA-sequencing revealed that CALRdel52 led to the expansion of TGF-ß1-producing erythroid progenitor cells and promoted the expansion of FoxP3+ regulatory T cells (Treg) in a murine MPN model. Treatment with an anti-TGF-ß antibody improved mouse survival and increased the glycolytic activity in CD4+ and CD8+ T cells in vivo, while T cell depletion abrogated the protective effects conferred by neutralizing TGF-ß. TGF-ß1 reduced perforin and TNF-α production by T cells in vitro. TGF-ß1 production by CALRdel52 cells was dependent on JAK1/2, PI3K, and ERK activity, which activated the transcription factor Sp1 to induce TGF-ß1 expression. In four independent patient cohorts, TGF-ß1 expression was increased in the BM of MPN patients compared to healthy individuals, and the BM of MPN patients contained a higher frequency of Treg compared to healthy individuals. Together, this study identified an ERK/Sp1/TGF-ß1 axis in CALRdel52 MPNs as a mechanism of immunosuppression that can be targeted to elicit T-cell-mediated cytotoxicity.

3.
J Hematol Oncol ; 17(1): 43, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853260

RESUMO

BACKGROUND: Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS: Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1ß. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS: Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS: Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.


Assuntos
Inflamação , Janus Quinase 2 , Transtornos Mieloproliferativos , Neutrófilos , Animais , Neutrófilos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Calreticulina/genética , Calreticulina/metabolismo , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
4.
Faraday Discuss ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847587

RESUMO

Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue Nδ-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus (MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system, G1PylRSMIFAF can operate efficiently using MeHis concentrations of ∼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRSMIFAF is also a 'polyspecific' aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements.

5.
Blood ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805639

RESUMO

Loss of long-term hematopoietic stem cell (LT-HSC) function ex vivo hampers the success of clinical protocols reliant on culture. However, the kinetics and mechanisms by which this occurs remain incompletely characterized. Here, through time-resolved scRNA-Seq, matched in vivo functional analysis and the use of a reversible in vitro system of early G1 arrest, we define the sequence of transcriptional and functional events occurring during the first ex vivo division of human LT-HSCs. We demonstrate that the sharpest loss of LT-HSC repopulation capacity happens early on, between 6 and 24 hours of culture, before LT-HSCs commit to cell cycle progression. During this time window, LT-HSCs adapt to the culture environment, limiting global variability in gene expression and transiently upregulating gene networks involved in signaling and stress responses. From 24 hours, LT-HSC progression past early G1 contributes to the establishment of differentiation programmes in culture. However, contrary to current assumptions, we demonstrate that loss of HSC function ex vivo is independent of cell cycle progression. Finally, we show that targeting LT-HSC adaptation to culture by inhibiting early activation of JAK/STAT signaling improves HSC long-term repopulating function ex vivo. Collectively, our study demonstrates that controlling early LT-HSC adaptation to ex vivo culture, for example via JAK inhibition, is of critical importance to improve HSC gene therapy and expansion protocols.

6.
Exp Hematol ; 135: 104246, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763471

RESUMO

Key studies in pre-leukemic disorders have linked increases in pro-inflammatory cytokines with accelerated phases of the disease, but the precise role of the cellular microenvironment in disease initiation and evolution remains poorly understood. In myeloproliferative neoplasms (MPNs), higher levels of specific cytokines have been previously correlated with increased disease severity (tumor necrosis factor-alpha [TNF-α], interferon gamma-induced protein-10 [IP-10 or CXCL10]) and decreased survival (interleukin 8 [IL-8]). Whereas TNF-α and IL-8 have been studied by numerous groups, there is a relative paucity of studies on IP-10 (CXCL10). Here we explore the relationship of IP-10 levels with detailed genomic and clinical data and undertake a complementary cytokine screen alongside functional assays in a wide range of MPN mouse models. Similar to patients, levels of IP-10 were increased in mice with more severe disease phenotypes (e.g., JAK2V617F/V617F TET2-/- double-mutant mice) compared with those with less severe phenotypes (e.g., CALRdel52 or JAK2+/V617F mice) and wild-type (WT) littermate controls. Although exposure to IP-10 did not directly alter proliferation or survival in single hematopoietic stem cells (HSCs) in vitro, IP-10-/- mice transplanted with disease-initiating HSCs developed an MPN phenotype more slowly, suggesting that the effect of IP-10 loss was noncell-autonomous. To explore the broader effects of IP-10 loss, we crossed IP-10-/- mice into a series of MPN mouse models and showed that its loss reduces the erythrocytosis observed in mice with the most severe phenotype. Together, these data point to a potential role for blocking IP-10 activity in the management of MPNs.


Assuntos
Quimiocina CXCL10 , Transtornos Mieloproliferativos , Policitemia , Animais , Humanos , Masculino , Camundongos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Modelos Animais de Doenças , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos Knockout , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Transtornos Mieloproliferativos/metabolismo , Policitemia/genética , Policitemia/patologia , Policitemia/etiologia , Feminino
7.
Nat Commun ; 15(1): 1956, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438341

RESUMO

Directed evolution of computationally designed enzymes has provided new insights into the emergence of sophisticated catalytic sites in proteins. In this regard, we have recently shown that a histidine nucleophile and a flexible arginine can work in synergy to accelerate the Morita-Baylis-Hillman (MBH) reaction with unrivalled efficiency. Here, we show that replacing the catalytic histidine with a non-canonical Nδ-methylhistidine (MeHis23) nucleophile leads to a substantially altered evolutionary outcome in which the catalytic Arg124 has been abandoned. Instead, Glu26 has emerged, which mediates a rate-limiting proton transfer step to deliver an enzyme (BHMeHis1.8) that is more than an order of magnitude more active than our earlier MBHase. Interestingly, although MeHis23 to His substitution in BHMeHis1.8 reduces activity by 4-fold, the resulting His containing variant is still a potent MBH biocatalyst. However, analysis of the BHMeHis1.8 evolutionary trajectory reveals that the MeHis nucleophile was crucial in the early stages of engineering to unlock the new mechanistic pathway. This study demonstrates how even subtle perturbations to key catalytic elements of designed enzymes can lead to vastly different evolutionary outcomes, resulting in new mechanistic solutions to complex chemical transformations.


Assuntos
Arginina , Histidina , Histidina/genética , Evolução Biológica , Catálise , Engenharia , Metilistidinas
8.
Chem Soc Rev ; 53(6): 2851-2862, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38353665

RESUMO

The engineering of natural enzymes has led to the availability of a broad range of biocatalysts that can be used for the sustainable manufacturing of a variety of chemicals and pharmaceuticals. However, for many important chemical transformations there are no known enzymes that can serve as starting templates for biocatalyst development. These limitations have fuelled efforts to build entirely new catalytic sites into proteins in order to generate enzymes with functions beyond those found in Nature. This bottom-up approach to enzyme development can also reveal new fundamental insights into the molecular origins of efficient protein catalysis. In this tutorial review, we will survey the different strategies that have been explored for designing new protein catalysts. These methods will be illustrated through key selected examples, which demonstrate how highly proficient and selective biocatalysts can be developed through experimental protein engineering and/or computational design. Given the rapid pace of development in the field, we are optimistic that designer enzymes will begin to play an increasingly prominent role as industrial biocatalysts in the coming years.


Assuntos
Engenharia de Proteínas , Proteínas , Proteínas/metabolismo , Catálise , Enzimas/metabolismo , Biocatálise
9.
Chem Soc Rev ; 53(6): 2828-2850, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38407834

RESUMO

Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.


Assuntos
Engenharia de Proteínas , Biocatálise , Catálise
10.
Nat Genet ; 56(2): 273-280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233595

RESUMO

Myeloproliferative neoplasms (MPNs) are chronic cancers characterized by overproduction of mature blood cells. Their causative somatic mutations, for example, JAK2V617F, are common in the population, yet only a minority of carriers develop MPN. Here we show that the inherited polygenic loci that underlie common hematological traits influence JAK2V617F clonal expansion. We identify polygenic risk scores (PGSs) for monocyte count and plateletcrit as new risk factors for JAK2V617F positivity. PGSs for several hematological traits influenced the risk of different MPN subtypes, with low PGSs for two platelet traits also showing protective effects in JAK2V617F carriers, making them two to three times less likely to have essential thrombocythemia than carriers with high PGSs. We observed that extreme hematological PGSs may contribute to an MPN diagnosis in the absence of somatic driver mutations. Our study showcases how polygenic backgrounds underlying common hematological traits influence both clonal selection on somatic mutations and the subsequent phenotype of cancer.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Fenótipo , Janus Quinase 2/genética , Estratificação de Risco Genético
11.
FEBS J ; 291(7): 1404-1421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060334

RESUMO

The photoenzyme protochlorophyllide oxidoreductase (POR) is an important enzyme for understanding biological H-transfer mechanisms. It uses light to catalyse the reduction of protochlorophyllide to chlorophyllide, a key step in chlorophyll biosynthesis. Although a wealth of spectroscopic data have provided crucial mechanistic insight, a structural rationale for POR photocatalysis has proved challenging and remains hotly debated. Recent structural models of the ternary enzyme-substrate complex, derived from crystal and electron microscopy data, show differences in the orientation of the protochlorophyllide substrate and the architecture of the POR active site, with significant implications for the catalytic mechanism. Here, we use a combination of computational and experimental approaches to investigate the compatibility of each structural model with the hypothesised reaction mechanisms and propose an alternative structural model for the cyanobacterial POR ternary complex. We show that a strictly conserved tyrosine, previously proposed to act as the proton donor in POR photocatalysis, is unlikely to be involved in this step of the reaction but is crucial for Pchlide binding. Instead, an active site cysteine is important for both hydride and proton transfer reactions in POR and is proposed to act as the proton donor, either directly or through a water-mediated network. Moreover, a conserved glutamine is important for Pchlide binding and ensuring efficient photochemistry by tuning its electronic properties, likely by interacting with the central Mg atom of the substrate. This optimal 'binding pose' for the POR ternary enzyme-substrate complex illustrates how light energy can be harnessed to facilitate enzyme catalysis by this unique enzyme.


Assuntos
Cianobactérias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida/química , Luz , Prótons , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotoquímica
12.
Cell Genom ; 3(12): 100426, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38116120

RESUMO

Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.

13.
In Vivo ; 37(6): 2421-2432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905617

RESUMO

BACKGROUND/AIM: Patients with radiation sensitive Fanconi anemia (FA) are presenting with cancers of the oral cavity, oropharynx, and other anatomic locations. MATERIALS AND METHODS: Animal models for cancer in FA mice used orthotopic tumors from wild type mice. We derived a cancer cell line from Fanca-/- mice by topical application of the chemical carcinogen dimethyl benzanthracene (DMBA). RESULTS: A Fanca-/- mouse rhabdomyosarcoma was derived from a Fanca-/- (129/Sv) mouse. The in vitro clonogenic survival of the Fanca-/- clone 6 cancer cell line was consistent with the FA genotype. Transplanted tumors demonstrated hypoxic centers surrounded by senescent cells. CONCLUSION: This Fanca-/- mouse syngeneic cancer should provide a valuable resource for discovery and development of new normal tissue radioprotectors for patients with FA and cancer.


Assuntos
Anemia de Fanconi , Neoplasias , Humanos , Camundongos , Animais , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Linhagem Celular , Carcinógenos/toxicidade , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética
14.
Lett Appl Microbiol ; 76(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656878

RESUMO

Film-forming yeasts are potential sources of defects in alcoholic beverages. The aim of this study is to assess the growth capacity of Pichia and Candida film-forming yeasts in cider and wine and the effects on their chemical composition. Cider, partially and fully fermented wine were inoculated with strains of C. californica, P. fermentans, P. kluyveri, P. kudriavzevii, P. manshurica, and P. membranifaciens to simulate a post-fermentative contamination. The former three species grew only in cider. Pichia manshurica and P. kudriavzevii displayed high viability in wine up to 13.18% (v v-1) ethanol. Significant changes in odour-active molecules from different chemical groups were observed in cider and wine in the inoculated samples, compared to the non-inoculated ones. Cider is more susceptible to contamination by all of the species tested, due to its low alcohol content, while P. membranifaciens, P. manshurica, and P. kudriavzevii are additionally potential spoilage agents of wine. This study highlights the risk of cider and wine contamination by film-forming yeasts. Their impact on aroma profiles depends on their ability to grow and their metabolism. This study contributes to an understanding of the possible physiological and metabolic mechanisms responsible for film formation and chemical changes in alcoholic beverages.


Assuntos
Vinho , Fermentação , Pichia , Bebidas Alcoólicas , Candida
15.
J Am Chem Soc ; 145(37): 20672-20682, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37688545

RESUMO

Oxygenase and peroxygenase enzymes generate intermediates at their active sites which bring about the controlled functionalization of inert C-H bonds in substrates, such as in the enzymatic conversion of methane to methanol. To be viable catalysts, however, these enzymes must also prevent oxidative damage to essential active site residues, which can occur during both coupled and uncoupled turnover. Herein, we use a combination of stopped-flow spectroscopy, targeted mutagenesis, TD-DFT calculations, high-energy resolution fluorescence detection X-ray absorption spectroscopy, and electron paramagnetic resonance spectroscopy to study two transient intermediates that together form a protective pathway built into the active sites of copper-dependent lytic polysaccharide monooxygenases (LPMOs). First, a transient high-valent species is generated at the copper histidine brace active site following treatment of the LPMO with either hydrogen peroxide or peroxyacids in the absence of substrate. This intermediate, which we propose to be a CuII-(histidyl radical), then reacts with a nearby tyrosine residue in an intersystem-crossing reaction to give a ferromagnetically coupled (S = 1) CuII-tyrosyl radical pair, thereby restoring the histidine brace active site to its resting state and allowing it to re-enter the catalytic cycle through reduction. This process gives the enzyme the capacity to minimize damage to the active site histidine residues "on the fly" to increase the total turnover number prior to enzyme deactivation, highlighting how oxidative enzymes are evolved to protect themselves from deleterious side reactions during uncoupled turnover.


Assuntos
Cobre , Histidina , Oxigenases de Função Mista , Estresse Oxidativo , Catálise
16.
Angew Chem Int Ed Engl ; 62(52): e202309305, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37651344

RESUMO

The development and implementation of sustainable catalytic technologies is key to delivering our net-zero targets. Here we review how engineered enzymes, with a focus on those developed using directed evolution, can be deployed to improve the sustainability of numerous processes and help to conserve our environment. Efficient and robust biocatalysts have been engineered to capture carbon dioxide (CO2 ) and have been embedded into new efficient metabolic CO2 fixation pathways. Enzymes have been refined for bioremediation, enhancing their ability to degrade toxic and harmful pollutants. Biocatalytic recycling is gaining momentum, with engineered cutinases and PETases developed for the depolymerization of the abundant plastic, polyethylene terephthalate (PET). Finally, biocatalytic approaches for accessing petroleum-based feedstocks and chemicals are expanding, using optimized enzymes to convert plant biomass into biofuels or other high value products. Through these examples, we hope to illustrate how enzyme engineering and biocatalysis can contribute to the development of cleaner and more efficient chemical industry.


Assuntos
Dióxido de Carbono , Engenharia , Biocatálise , Catálise , Biodegradação Ambiental , Enzimas/metabolismo
17.
J Org Chem ; 88(17): 12565-12571, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607396

RESUMO

In the wake of the Covid-19 pandemic, it has become clear that global access to efficacious antiviral drugs will be critical to combat future outbreaks of SARS-CoV-2 or related viruses. The orally available SARS-CoV-2 main protease inhibitor nirmatrelvir has proven an effective treatment option for Covid-19, especially in compromised patients. We report a new synthesis of nirmatrelvir featuring a highly enantioselective biocatalytic desymmetrization (>99% ee) and a highly diastereoselective multicomponent reaction (>25:1 dr) as the key steps. Our route avoids the use of transition metals and peptide coupling reagents, resulting in an overall highly efficient and atom-economic process.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Lactamas , Leucina , Nitrilas
18.
Neurologist ; 28(5): 335-337, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37582651

RESUMO

INTRODUCTION: Multiple medications have been related to triggering headache attacks or worsening headache frequency or severity in patients with migraine disease. However, the impact of direct oral anticoagulants on headache frequency and severity in patients with migraine disease is unclear. Current literature is scarce and controversial. CASE REPORT: A 45-year-old male with a history of migraine with aura for the last 20 years underwent percutaneous transcatheter closure of an atrial septal defect due to right ventricular enlargement and systolic dysfunction. The intervention was complicated by postprocedural atrial fibrillation, for which he was started on apixaban. Shortly after starting the apixaban, the patient experienced an increase in the frequency and severity of his migraine with aura episodes that were persistent until he discontinued this medication 7 months later. Following the discontinuation of apixaban, the patient's frequency and severity of migraine episodes returned to baseline almost immediately. CONCLUSION: Novel oral anticoagulants, including apixaban, may be associated with an increase in the frequency and severity of migraine attacks in patients with migraine disease. Larger observational studies are required to investigate further the impact of direct oral anticoagulants on migraine disease.


Assuntos
Transtornos de Enxaqueca , Enxaqueca com Aura , Masculino , Humanos , Pessoa de Meia-Idade , Enxaqueca com Aura/tratamento farmacológico , Enxaqueca com Aura/etiologia , Cefaleia/complicações , Anticoagulantes
19.
Nat Cancer ; 4(8): 1193-1209, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550517

RESUMO

Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Idoso , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/terapia , Transtornos Mieloproliferativos/patologia , Medula Óssea/patologia , Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/patologia , Osso e Ossos/patologia , Microambiente Tumoral/genética
20.
J Am Chem Soc ; 145(26): 14307-14315, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37341421

RESUMO

The catalytic versatility of pentacoordinated iron is highlighted by the broad range of natural and engineered activities of heme enzymes such as cytochrome P450s, which position a porphyrin cofactor coordinating a central iron atom below an open substrate binding pocket. This catalytic prowess has inspired efforts to design de novo helical bundle scaffolds that bind porphyrin cofactors. However, such designs lack the large open substrate binding pocket of P450s, and hence, the range of chemical transformations accessible is limited. Here, with the goal of combining the advantages of the P450 catalytic site geometry with the almost unlimited customizability of de novo protein design, we design a high-affinity heme-binding protein, dnHEM1, with an axial histidine ligand, a vacant coordination site for generating reactive intermediates, and a tunable distal pocket for substrate binding. A 1.6 Å X-ray crystal structure of dnHEM1 reveals excellent agreement to the design model with key features programmed as intended. The incorporation of distal pocket substitutions converted dnHEM1 into a proficient peroxidase with a stable neutral ferryl intermediate. In parallel, dnHEM1 was redesigned to generate enantiocomplementary carbene transferases for styrene cyclopropanation (up to 93% isolated yield, 5000 turnovers, 97:3 e.r.) by reconfiguring the distal pocket to accommodate calculated transition state models. Our approach now enables the custom design of enzymes containing cofactors adjacent to binding pockets with an almost unlimited variety of shapes and functionalities.


Assuntos
Heme , Porfirinas , Heme/química , Metais , Sistema Enzimático do Citocromo P-450/metabolismo , Ferro/química , Porfirinas/química , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...