Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 240: 118330, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237443

RESUMO

Between subject variability in the spatial and spectral structure of oscillatory networks can be highly informative but poses a considerable analytic challenge. Here, we describe a data-driven modal decomposition of a multivariate autoregressive model that simultaneously identifies oscillations by their peak frequency, damping time and network structure. We use this decomposition to define a set of Spatio-Spectral Eigenmodes (SSEs) providing a parsimonious description of oscillatory networks. We show that the multivariate system transfer function can be rewritten in these modal coordinates, and that the full transfer function is a linear superposition of all modes in the decomposition. The modal transfer function is a linear summation and therefore allows for single oscillatory signals to be isolated and analysed in terms of their spectral content, spatial distribution and network structure. We validate the method on simulated data and explore the structure of whole brain oscillatory networks in eyes-open resting state MEG data from the Human Connectome Project. We are able to show a wide between participant variability in peak frequency and network structure of alpha oscillations and show a distinction between occipital 'high-frequency alpha' and parietal 'low-frequency alpha'. The frequency difference between occipital and parietal alpha components is present within individual participants but is partially masked by larger between subject variability; a 10Hz oscillation may represent the high-frequency occipital component in one participant and the low-frequency parietal component in another. This rich characterisation of individual neural phenotypes has the potential to enhance analyses into the relationship between neural dynamics and a person's behavioural, cognitive or clinical state.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Magnetoencefalografia/métodos , Redes Neurais de Computação , Humanos , Análise Multivariada
2.
Chemistry ; 23(67): 16990-16997, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990279

RESUMO

Despite the successful use of isoniazid, rifampicin, pyrazinamide and ethambutol in the treatment of tuberculosis (TB), it is a disease of growing global concern. We illustrate here a series of methods that will dramatically improve the magnetic resonance imaging (MRI) detectability of nineteen TB-relevant agents. We note that the future probing of their uptake and distribution in vivo would be expected to significantly enhance their efficacy in disease treatment. This improvement in detectability is achieved by use of the parahydrogen based SABRE protocol in conjunction with the 2 H-labelling of key sites within their molecular structures and the 2 H-labelling of the magnetization transfer catalyst. The T1 relaxation times and polarization levels of these agents are quantified under test conditions to produce a protocol to identify structurally optimized motifs for future detection. For example, deuteration of the 6-position of a pyrazinamide analogue leads to a structural form that exhibits T1 values of 144.5 s for 5-H with up to 20 % polarization. This represents a >7-fold extension in relaxation time and almost 10-fold improvement in polarization level when compared to its unoptimized structure.


Assuntos
Antituberculosos/química , Deutério , Etambutol/química , Isoniazida/química , Espectroscopia de Ressonância Magnética , Pirazinamida/química , Rifampina/química
3.
Chemistry ; 23(44): 10491-10495, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28609572

RESUMO

Signal amplification by reversible exchange (SABRE) is shown to allow access to strongly enhanced 1 H NMR signals in a range of substrates in aqueous media. To achieve this outcome, phase-transfer catalysis is exploited, which leads to less than 1.5×10-6  mol dm-3 of the iridium catalyst in the aqueous phase. These observations reflect a compelling route to produce a saline-based hyperpolarized bolus in just a few seconds for subsequent in vivo MRI monitoring. The new process has been called catalyst separated hyperpolarization through signal amplification by reversible exchange or CASH-SABRE. We illustrate this method for the substrates pyrazine, 5-methylpyrimidine, 4,6-d2 -methyl nicotinate, 4,6-d2 -nicotinamide and pyridazine achieving 1 H signal gains of approximately 790-, 340-, 3000-, 260- and 380-fold per proton at 9.4 T at the time point at which phase separation is complete.

4.
Chemistry ; 23(44): 10496-10500, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28627764

RESUMO

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) suffer from low sensitivity and limited nuclear spin memory lifetimes. Although hyperpolarization techniques increase sensitivity, there is also a desire to increase relaxation times to expand the range of applications addressable by these methods. Here, we demonstrate a route to create hyperpolarized magnetization in 13 C nuclear spin pairs that last much longer than normal lifetimes by storage in a singlet state. By combining molecular design and low-field storage with para-hydrogen derived hyperpolarization, we achieve more than three orders of signal amplification relative to equilibrium Zeeman polarization and an order of magnitude extension in state lifetime. These studies use a range of specifically synthesized pyridazine derivatives and dimethyl p-tolyl phenyl pyridazine is the most successful, achieving a lifetime of about 190 s in low-field, which leads to a 13 C-signal that is visible for 10 minutes.

5.
Magn Reson Chem ; 55(10): 944-957, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28497481

RESUMO

The signal amplification by reversible exchange (SABRE) approach has been used to hyperpolarise the substrates indazole and imidazole in the presence of the co-ligand acetonitrile through the action of the precataysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)]. 2 H-labelled forms of these catalysts were also examined. Our comparison of the two precatalysts [IrCl(COD)(IMes)] and [IrCl(COD)(SIMes)], coupled with 2 H labelling of the N-heterocyclic carbene and associated relaxation and polarisation field variation studies, demonstrates the critical and collective role these parameters play in controlling the efficiency of signal amplification by reversible exchange. Ultimately, with imidazole, a 700-fold1 H signal gain per proton is produced at 400 MHz, whilst for indazole, a 90-fold increase per proton is achieved. The co-ligand acetonitrile proved to optimally exhibit a 190-fold signal gain per proton in these measurements, with the associated studies revealing the importance the substrate plays in controlling this value. Copyright © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

6.
Proc Natl Acad Sci U S A ; 114(16): E3188-E3194, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28377523

RESUMO

Hyperpolarization turns typically weak NMR and MRI responses into strong signals so that ordinarily impractical measurements become possible. The potential to revolutionize analytical NMR and clinical diagnosis through this approach reflect this area's most compelling outcomes. Methods to optimize the low-cost parahydrogen-based approach signal amplification by reversible exchange with studies on a series of biologically relevant nicotinamides and methyl nicotinates are detailed. These procedures involve specific 2H labeling in both the agent and catalyst and achieve polarization lifetimes of ca 2 min with 50% polarization in the case of methyl-4,6-d2 -nicotinate. Because a 1.5-T hospital scanner has an effective 1H polarization level of just 0.0005% this strategy should result in compressed detection times for chemically discerning measurements that probe disease. To demonstrate this technique's generality, we exemplify further studies on a range of pyridazine, pyrimidine, pyrazine, and isonicotinamide analogs that feature as building blocks in biochemistry and many disease-treating drugs.

7.
Chem Commun (Camb) ; 52(100): 14482-14485, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27904890

RESUMO

The hyperpolarisation of the 119Sn and 29Si nuclei in 5-(tributylstannyl)pyrimidine (ASn) and 5-(trimethylsilyl)pyrimidine (BSi) is achieved through their reaction with [IrCl(COD)(IMes)] (1a) or [IrCl(COD)(SIMes)] (1b) and parahydrogen via the SABRE process. 1a exhibits superior activity in both cases. The two inequivalent pyrimidine proton environments of ASn readily yielded signal enhancements totalling ∼2300-fold in its 1H NMR spectrum at a field strength of 9.4 T, with the corresponding 119Sn signal being 700 times stronger than normal. In contrast, BSi produced analogous 1H signal gains of ∼2400-fold and a 29Si signal that could be detected with a signal to noise ratio of 200 in a single scan. These sensitivity improvements allow NMR detection within seconds using micromole amounts of substrate and illustrate the analytical potential of this approach for high-sensitivity screening. Furthermore, after extended reaction times, a series of novel iridium trimers of general form [Ir(H)2Cl(NHC)(µ-pyrimidine-κN:κN')]3 precipitate from these solutions whose identity was confirmed crystallographically for BSi.


Assuntos
Processamento de Sinais Assistido por Computador , Silício/química , Estanho/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
8.
Inorg Chem ; 55(22): 11639-11643, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27934314

RESUMO

[IrCl(COE)2]2 (1) reacts with pyridine (py) and H2 to form crystallographically characterized IrCl(H)2(COE)(py)2 (2). 2 undergoes py loss to form 16-electron IrCl(H)2(COE)(py) (3), with equivalent hydride ligands. When this reaction is studied with parahydrogen, 1 efficiently achieves hyperpolarization of free py (and nicotinamide, nicotine, 5-aminopyrimidine, and 3,5-lutudine) via signal amplification by reversible exchange (SABRE) and hence reflects a simple and readily available precatayst for this process. 2 reacts further over 48 h at 298 K to form crystallographically characterized (Cl)(H)(py)(µ-Cl)(µ-H)(κ-µ-NC5H4)Ir(H)(py)2 (4). This dimer is active in the hydrogen isotope exchange process that is used in radiopharmaceutical preparations. Furthermore, while [Ir(H)2(COE)(py)3]PF6 (6) forms upon the addition of AgPF6 to 2, its stability precludes its efficient involvement in SABRE.

9.
Angew Chem Int Ed Engl ; 55(50): 15642-15645, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27862799

RESUMO

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are two extremely important techniques with applications ranging from molecular structure determination to human imaging. However, in many cases the applicability of NMR and MRI are limited by inherently poor sensitivity and insufficient nuclear spin lifetime. Here we demonstrate a cost-efficient and fast technique that tackles both issues simultaneously. We use the signal amplification by reversible exchange (SABRE) technique to hyperpolarize the target 1 H nuclei and store this polarization in long-lived singlet (LLS) form after suitable radiofrequency (rf) pulses. Compared to the normal scenario, we achieve three orders of signal enhancement and one order of lifetime extension, leading to 1 H NMR signal detection 15 minutes after the creation of the detected states. The creation of such hyperpolarized long-lived polarization reflects an important step forward in the pipeline to see such agents used as clinical probes of disease.

10.
Phys Chem Chem Phys ; 18(36): 24905-24911, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711398

RESUMO

The applicability of the magnetic resonance (MR) technique in the liquid phase is limited by poor sensitivity and short nuclear spin coherence times which are insufficient for many potential applications. Here we illustrate how it is possible to address both of these issues simultaneously by harnessing long-lived hyperpolarised spin states that are formed by adapting the Signal Amplification by Reversible Exchange (SABRE) technique. We achieve more than 4% net 1H-polarisation in a long-lived form that remains detectable for over ninety seconds by reference to proton pairs in the biologically important molecule nicotinamide and a pyrazine derivative whose in vivo imaging will offer a new route to probe disease in the future.

11.
Chem Commun (Camb) ; 52(50): 7842-5, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27242264

RESUMO

The creation of magnetic states that have long lifetimes has been the subject of intense investigation, in part because of their potential to survive the time taken to travel from the point of injection in a patient to the point where a clinically diagnostic MRI trace is collected. We show here that it is possible to harness the signal amplification by reversible exchange (SABRE) process to create such states in a hyperpolarised form that improves their detectability in seconds without the need for any chemical change by reference to the model substrate 2-aminothiazole. We achieve this by transferring Zeeman derived polarisation that is 1500 times larger than that normally available at 400 MHz with greater than 90% efficiency into the new state, which in this case has a 27 second lifetime.

12.
J Phys Chem B ; 120(25): 5670-7, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27228166

RESUMO

In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B , 2014 , 118 , 13882 - 13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The (1)H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 × 10(-4)) or an enhancement of 10(4). The polarization persisted, although reduced, if cell culture medium (DPBS with Ca(2+) and Mg(2+)) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast (1)H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field.


Assuntos
Imageamento por Ressonância Magnética , Niacinamida/química , Água/química , Células Sanguíneas/química , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Catálise , Complexos de Coordenação/química , Óxido de Deutério/química , Células HL-60 , Humanos , Hidrogênio/química , Irídio/química , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Razão Sinal-Ruído
13.
J Neurosci ; 35(45): 15088-96, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558780

RESUMO

An unresolved goal in face perception is to identify brain areas involved in face processing and simultaneously understand the timing of their involvement. Currently, high spatial resolution imaging techniques identify the fusiform gyrus as subserving processing of invariant face features relating to identity. High temporal resolution imaging techniques localize an early latency evoked component-the N/M170-as having a major generator in the fusiform region; however, this evoked component is not believed to be associated with the processing of identity. To resolve this, we used novel magnetoencephalographic beamformer analyses to localize cortical regions in humans spatially with trial-by-trial activity that differentiated faces and objects and to interrogate their functional sensitivity by analyzing the effects of stimulus repetition. This demonstrated a temporal sequence of processing that provides category-level and then item-level invariance. The right fusiform gyrus showed adaptation to faces (not objects) at ∼150 ms after stimulus onset regardless of face identity; however, at the later latency of ∼200-300 ms, this area showed greater adaptation to repeated identity faces than to novel identities. This is consistent with an involvement of the fusiform region in both early and midlatency face-processing operations, with only the latter showing sensitivity to invariant face features relating to identity. SIGNIFICANCE STATEMENT: Neuroimaging techniques with high spatial-resolution have identified brain structures that are reliably activated when viewing faces and techniques with high temporal resolution have identified the time-varying temporal signature of the brain's response to faces. However, until now, colocalizing face-specific mechanisms in both time and space has proven notoriously difficult. Here, we used novel magnetoencephalographic analysis techniques to spatially localize cortical regions with trial-by-trial temporal activity that differentiates between faces and objects and to interrogate their functional sensitivity by analyzing effects of stimulus repetition on the time-locked signal. These analyses confirm a role for the right fusiform region in early to midlatency responses consistent with face identity processing and convincingly deliver upon magnetoencephalography's promise to resolve brain signals in time and space simultaneously.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Reconhecimento Facial/fisiologia , Magnetoencefalografia/métodos , Estimulação Luminosa/métodos , Percepção Espacial/fisiologia , Adulto , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Fatores de Tempo , Adulto Jovem
14.
Chem Commun (Camb) ; 51(48): 9857-9, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25989727

RESUMO

The catalyst which is used in the signal amplification by reversible exchange (SABRE) process facilitates substrate hyperpolarisation while acting to speed up the rate of relaxation. Consequently, the lifetime over which the hyperpolarised contrast agent is visible is drastically reduced. We show that the addition of a chelating ligand, such as bipyridine, rapidly deactivates the SABRE catalyst thereby lengthening the agent's relaxation times and improving the potential of SABRE for diagnostic MRI.


Assuntos
2,2'-Dipiridil/química , Niacinamida/química , Catálise , Meios de Contraste/química , Irídio/química , Espectroscopia de Ressonância Magnética , Fenantrolinas/química
15.
J Phys Chem B ; 119(15): 5020-7, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25811635

RESUMO

Traditional (31)P NMR or MRI measurements suffer from low sensitivity relative to (1)H detection and consequently require longer scan times. We show here that hyperpolarization of (31)P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold (31)P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan (31)P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. (31)P-hyperpolarized images are also reported from a 7 T preclinical scanner.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Radioisótopos de Fósforo/química , Radioisótopos de Carbono , Ésteres/química , Hidrogênio/química , Espectroscopia de Ressonância Magnética/instrumentação , Metanol/química , Estrutura Molecular , Imagens de Fantasmas , Prótons , Soluções , Solventes/química
16.
Organometallics ; 34(12): 2997-3006, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28239225

RESUMO

A novel neutral iridium carbene complex Ir(κC,O-L1)(COD) (1) [where COD = cyclooctadiene and L1 = 3-(2-methylene-4-nitrophenolate)-1-(2,4,6-trimethylphenyl) imidazolylidene] with a pendant alkoxide ligand has been prepared and characterized. It contains a strong Ir-O bond and X-ray analysis reveals a distorted square planar structure. NMR spectroscopy reveals dynamic solution state behavior commensurate with rapid seven-membered ring flipping. In CD2Cl2 solution, under hydrogen at low temperature, this complex dominates although it exists in equilibrium with a reactive iridium dihydride cyclooctadiene complex. 1 reacts with pyridine and H2 to form neutral Ir(H)2(κC,O-L1)(py)2 which also exists in two conformers that differ according to the orientation of the seven-membered metallocycle and whilst its Ir-O bond remains intact, the complex undergoes both pyridine and H2 exchange. As a consequence, when placed under parahydrogen, efficient polarization transfer catalysis (PTC) is observed via the Signal Amplification By Reversible Exchange (SABRE) approach. Due to the neutral character of this catalyst, good hyperpolarization activity is shown in a wide range of solvents for a number of substrates. These observations reflect a dramatic improvement in solvent tolerance of SABRE over that reported for the best PTC precursor IrCl(IMes)(COD). For THF, the associated 1H NMR signal enhancement for the ortho proton signal of pyridine shows an increase of 600-fold at 298 K. The level of signal enhancement can be increased further through warming or varying the magnetic field experienced by the sample at the point of catalytic magnetization transfer.

17.
Chem Sci ; 6(7): 3981-3993, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218168

RESUMO

The reaction of [Ir(IMes)(COD)Cl], [IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene, COD = 1,5-cyclooctadiene] with pyridazine (pdz) and phthalazine (phth) results in the formation of [Ir(COD)(IMes)(pdz)]Cl and [Ir(COD)(IMes)(phth)]Cl. These two complexes are shown by nuclear magnetic resonance (NMR) studies to undergo a haptotropic shift which interchanges pairs of protons within the bound ligands. When these complexes are exposed to hydrogen, they react to form [Ir(H)2(COD)(IMes)(pdz)]Cl and [Ir(H)2(COD)(IMes)(phth)]Cl, respectively, which ultimately convert to [Ir(H)2(IMes)(pdz)3]Cl and [Ir(H)2(IMes)(phth)3]Cl, as the COD is hydrogenated to form cyclooctane. These two dihydride complexes are shown, by NMR, to undergo both full N-heterocycle dissociation and a haptotropic shift, the rates of which are affected by both steric interactions and free ligand pKa values. The use of these complexes as catalysts in the transfer of polarisation from para-hydrogen to pyridazine and phthalazine via signal amplification by reversible exchange (SABRE) is explored. The possible future use of drugs which contain pyridazine and phthalazine motifs as in vivo or clinical magnetic resonance imaging probes is demonstrated; a range of NMR and phantom-based MRI measurements are reported.

18.
Dalton Trans ; 44(3): 1077-83, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25410259

RESUMO

The short lived pincer complex [(C5H3N(CH2P((t)Bu)2)2)Ir(H)2(py)]BF4 is shown to be active for signal amplification by reversible exchange. This catalyst formulation enables the efficient transfer of polarization from parahydrogen to be placed into just a single molecule of the hyperpolarisation target, pyridine. When the catalysts (1)H nuclei are replaced by (2)H, increased levels of substrate hyperpolarization result and when the reverse situation is examined the catalyst itself is clearly visible through hyperpolarised signals. The ligand exchange pathways of [(C5H3N(CH2P((t)Bu)2)2)Ir(H)2(py)]BF4 that are associated with this process are shown to involve the formation of 16-electron [(C5H3N(CH2P((t)Bu)2)2)Ir(H)2]BF4 and the 18-electron H2 addition product [(C5H3N(CH2P((t)Bu)2)2)Ir(H)2(H2)]BF4.


Assuntos
Complexos de Coordenação/química , Irídio/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Hidrogênio/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Piridinas/química
19.
J Phys Chem B ; 119(4): 1416-24, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25539423

RESUMO

We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the (1)H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3](+) is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)](+) and the resulting acetonitrile (1)H signal enhancement increases to 20- and 60-fold, respectively. In (13)C NMR studies, polarization transfers optimally to the quaternary (13)C nucleus of MeCN while the methyl (13)C is hardly polarized. Transfer to (13)C is shown to occur first via the (1)H-(1)H coupling between the hydrides and the methyl protons and then via either the (2)J or (1)J couplings to the respective (13)Cs, of which the (2)J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of (1)H nuclei in the three-spin methyl group are created. Two-spin order states, between the (1)H and (13)C nuclei, are also created, and their existence is confirmed for Me(13)CN in both the (1)H and (13)C NMR spectra using the Only Parahydrogen Spectroscopy protocol.


Assuntos
Acetonitrilas/química , Ligantes , Espectroscopia de Ressonância Magnética
20.
Magn Reson Chem ; 52(7): 358-69, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24801201

RESUMO

Hyperpolarization methods are used in NMR to overcome its inherent sensitivity problem. Herein, the biologically relevant target nicotinamide is polarized by the hyperpolarization technique signal amplification by reversible exchange. We illustrate how the polarization transfer field, and the concentrations of parahydrogen, the polarization-transfer-catalyst and substrate can be used to maximize signal amplification by reversible exchange effectiveness by reference to the first-order spin system of this target. The catalyst is shown to be crucial in this process, first by facilitating the transfer of hyperpolarization from parahydrogen to nicotinamide and then by depleting the resulting polarized states through further interaction. The 15 longitudinal one, two, three and four spin order terms produced are rigorously identified and quantified using an automated flow apparatus in conjunction with NMR pulse sequences based on the only parahydrogen spectroscopy protocol. The rates of build-up of these terms were shown to follow the order four~three > two > single spin; this order parallels their rates of relaxation. The result of these competing effects is that the less-efficiently formed single-spin order terms dominate at the point of measurement with the two-spin terms having amplitudes that are an order of magnitude lower. We also complete further measurements to demonstrate that (13)C NMR spectra can be readily collected where the long-lived quaternary (13)C signals appear with significant intensity. These are improved upon by using INEPT. In summary, we dissect the complexity of this method, highlighting its benefits to the NMR community and its applicability for high-sensitivity magnetic resonance imaging detection in the future.


Assuntos
Análise de Injeção de Fluxo/instrumentação , Hidrogênio/química , Espectroscopia de Ressonância Magnética/instrumentação , Microquímica/instrumentação , Técnicas de Sonda Molecular/instrumentação , Niacinamida/análise , Niacinamida/química , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...