Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Comb Sci ; 21(5): 350-361, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-30888788

RESUMO

High-throughput experimental (HTE) techniques are an increasingly important way to accelerate the rate of materials research and development for many technological applications. However, there are very few publications on the reproducibility of the HTE results obtained across different laboratories for the same materials system, and on the associated sample and data exchange standards. Here, we report a comparative study of Zn-Sn-Ti-O thin films materials using high-throughput experimental methods at National Institute of Standards and Technology (NIST) and National Renewable Energy Laboratory (NREL). The thin film sample libraries were synthesized by combinatorial physical vapor deposition (cosputtering and pulsed laser deposition) and characterized by spatially resolved techniques for composition, structure, thickness, optical, and electrical properties. The results of this study indicate that all these measurement techniques performed at two different laboratories show excellent qualitative agreement. The quantitative similarities and differences vary by measurement type, with 95% confidence interval of 0.1-0.2 eV for the band gap, 24-29 nm for film thickness, and 0.08 to 0.37 orders of magnitude for sheet resistance. Overall, this work serves as a case study for the feasibility of a High-Throughput Experimental Materials Collaboratory (HTE-MC) by demonstrating the exchange of high-throughput sample libraries, workflows, and data.


Assuntos
Ligas/química , Óxidos/química , Estanho/química , Titânio/química , Zinco/química , Técnicas de Química Combinatória , Ensaios de Triagem em Larga Escala , Lasers , Teste de Materiais , Bibliotecas de Moléculas Pequenas/química
2.
J Phys Chem Lett ; 6(1): 148-52, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26263103

RESUMO

Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, we shed light on the nature of the interaction between CO2 and the amine moieties in a hyperbranched aminosilica (HAS) material, a porous aminosilica composite with great potential for postcombustion carbon capture applications. We show that after dosing a pristine (annealed) HAS sample with CO2, the C K-edge NEXAFS spectrum presents a new π* resonance at 289.9 eV, which can be attributed to the formation of a C═O (carbonyl) bond. Additional analyses of the O K-edge using model samples containing carbamate, carbonate, and bicarbonate functional groups as reference demonstrate a carbamate bonding mechanism for the chemical adsorption of CO2 by the HAS material under the conditions employed. These findings show the capability of the C and O K-edge NEXAFS technique to identify CO2-adsorbate species despite the high concentration of C and O atoms inherently present in the sample (prior to CO2 dosing) and the significant similarities between the possible adsorbates.

3.
Environ Sci Technol ; 47(21): 11960-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24060087

RESUMO

The commercial deployment of cost-effective carbon capture technology is hindered partially by the lack of a proper suite of materials-related measurements, standards, and data, which would provide critical information for the systematic design, evaluation, and performance of CO2 separation materials. Based on a literature search and conversations with the carbon capture community, we review the current status of measurements, standards, and data for the three major carbon capture materials in use today: solvents, solid sorbents, and membranes. We highlight current measurement, standards and data activities aimed to advance the development and use of carbon capture materials and major research needs that are critical to meet if innovation in carbon capture materials is to be achieved. The review reveals that although adsorbents are considered to have great potential to reduce carbon capture cost, there is no consensus on the experimental parameters to be used for evaluating sorbent properties. Another important finding is the lack of in situ experimental tools for the structural characterization of solid porous materials during CO2 adsorption, and computational methods that would enable a materials-by-design approach for their development.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Dióxido de Carbono/análise , Sequestro de Carbono , Manufaturas/normas , Adsorção , Poluentes Atmosféricos/química , Poluição do Ar/legislação & jurisprudência , Poluição do Ar/prevenção & controle , Dióxido de Carbono/química , Regulamentação Governamental , Membranas Artificiais , Solventes/química , Solventes/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...