Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Life Sci Alliance ; 2(2)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30808650

RESUMO

FUS (fused in sarcoma) plays a key role in several steps of RNA metabolism, and dominant mutations in this protein are associated with neurodegenerative diseases. Here, we show that FUS is a component of the cellular response to topoisomerase I (TOP1)-induced DNA breakage; relocalising to the nucleolus in response to RNA polymerase II (Pol II) stalling at sites of TOP1-induced DNA breaks. This relocalisation is rapid and dynamic, reversing following the removal of TOP1-induced breaks and coinciding with the recovery of global transcription. Importantly, FUS relocalisation following TOP1-induced DNA breakage is associated with increased FUS binding at sites of RNA polymerase I transcription in ribosomal DNA and reduced FUS binding at sites of RNA Pol II transcription, suggesting that FUS relocates from sites of stalled RNA Pol II either to regulate pre-mRNA processing during transcriptional stress or to modulate ribosomal RNA biogenesis. Importantly, FUS-mutant patient fibroblasts are hypersensitive to TOP1-induced DNA breakage, highlighting the possible relevance of these findings to neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo I/metabolismo , Proteína FUS de Ligação a RNA/genética , Transcrição Gênica , Células A549 , Esclerose Lateral Amiotrófica/genética , Animais , Sítios de Ligação , Encéfalo/citologia , Encéfalo/embriologia , Cromatina/metabolismo , Reparo do DNA , Fibroblastos/metabolismo , Células HeLa , Humanos , Camundongos , Proteínas Mutantes , Mutação/genética , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , Proteína FUS de Ligação a RNA/metabolismo
2.
Nucleic Acids Res ; 42(1): 307-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24049082

RESUMO

Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUS(R521G), harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Dano ao DNA , Poli(ADP-Ribose) Polimerases/fisiologia , Proteína FUS de Ligação a RNA/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Mutação , Oxirredução , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/biossíntese , Poli Adenosina Difosfato Ribose/metabolismo , Proteína FUS de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...