Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(4): 1748-1763, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31930331

RESUMO

The double-helical structure of DNA results from canonical base pairing and stacking interactions. However, variations from steady-state conformations resulting from mechanical perturbations in cells have physiological relevance but their dependence on sequence remains unclear. Here, we use molecular dynamics simulations showing sequence differences result in markedly different structural motifs upon physiological twisting and stretching. We simulate overextension on different sequences of DNA ((AA)12, (AT)12, (CC)12 and (CG)12) with supercoiling densities at 200 and 50 mM salt concentrations. We find that DNA denatures in the majority of stretching simulations, surprisingly including those with over-twisted DNA. GC-rich sequences are observed to be more stable than AT-rich ones, with the specific response dependent on the base pair order. Furthermore, we find that (AT)12 forms stable periodic structures with non-canonical hydrogen bonds in some regions and non-canonical stacking in others, whereas (CG)12 forms a stacking motif of four base pairs independent of supercoiling density. Our results demonstrate that 20-30% DNA extension is sufficient for breaking B-DNA around and significantly above cellular supercoiling, and that the DNA sequence is crucial for understanding structural changes under mechanical stress. Our findings have important implications for the activities of protein machinery interacting with DNA in all cells.


Assuntos
Pareamento de Bases/genética , Sequência de Bases/genética , DNA/química , Fenômenos Biofísicos , DNA/genética , Sequência Rica em GC/genética , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação de Ácido Nucleico
2.
J Biomol Struct Dyn ; 21(4): 469-88, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14692792

RESUMO

The effect of spermine on the A-DNA to B-DNA transition in d(CGCGAATTCGCG)(2) has been investigated by five A-start molecular dynamics simulations, using the Cornell et al. potential. In the absence of spermine an A-->B transition is initiated immediately and the DNA becomes equidistant from the A- and B-forms at 200ps. In three DNA-spermine simulations, when a spermine is located across the major groove of A-DNA in one of three different initial locations, the time taken to reach equidistance from the A- and B-forms is delayed until 800, 950 or 1000ps. In each case the A-form appears to be temporarily stabilized by spermine's electrostatic interactions with phosphates on both sides of the major groove. The onset of the A-->B transition can be correlated with the spermine losing contact with phosphates on one side of the groove and with A-like --> B-like sugar pucker transitions in the vicinity of the spermine bridge. However in the fifth trajectory, in which the spermine initially threads from the major groove via the backbone into the minor groove, the B-->A transition occurs rapidly once again and the DNA is equidistant between the A- and B-forms within 300ps. This indicates that the mere presence of spermine is insufficient to delay the transition and that major groove binding stabilizes A-DNA.


Assuntos
DNA/metabolismo , Conformação de Ácido Nucleico , Espermina/metabolismo , Simulação por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...