Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(3): 360-369, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36593309

RESUMO

The flagella of mammalian sperm display non-planar, asymmetric beating, in contrast to the planar, symmetric beating of flagella from sea urchin sperm and unicellular organisms. The molecular basis of this difference is unclear. Here, we perform in situ cryo-electron tomography of mouse and human sperm, providing the highest-resolution structural information to date. Our subtomogram averages reveal mammalian sperm-specific protein complexes within the microtubules, the radial spokes and nexin-dynein regulatory complexes. The locations and structures of these complexes suggest potential roles in enhancing the mechanical strength of mammalian sperm axonemes and regulating dynein-based axonemal bending. Intriguingly, we find that each of the nine outer microtubule doublets is decorated with a distinct combination of sperm-specific complexes. We propose that this asymmetric distribution of proteins differentially regulates the sliding of each microtubule doublet and may underlie the asymmetric beating of mammalian sperm.


Assuntos
Axonema , Dineínas , Animais , Masculino , Humanos , Axonema/metabolismo , Dineínas/metabolismo , Tomografia com Microscopia Eletrônica , Sêmen/metabolismo , Espermatozoides , Microtúbulos/metabolismo , Flagelos/metabolismo , Mamíferos/metabolismo
2.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31874113

RESUMO

Cells use motile cilia to generate force in the extracellular space. The structure of a cilium can be classified into three subdomains: the intracellular basal body (BB) that templates cilium formation, the extracellular axoneme that generates force, and the transition zone (TZ) that bridges them. While the BB is composed of triplet microtubules (TMTs), the axoneme is composed of doublet microtubules (DMTs), meaning the cilium must convert between different microtubule geometries. Here, we performed electron cryotomography to define this conversion, and our reconstructions reveal identifying structural features of the BB, TZ, and axoneme. Each region is distinct in terms of microtubule number and geometry, microtubule inner proteins, and microtubule linkers. TMT to DMT conversion occurs within the BB, and microtubule geometry changes to axonemal by the end of the TZ, followed by the addition of axoneme-specific components essential for cilium motility. Our results provide the highest-resolution images of the motile cilium to date and reveal how BBs template axonemes.


Assuntos
Axonema/ultraestrutura , Corpos Basais/ultraestrutura , Cílios/ultraestrutura , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Microtúbulos/ultraestrutura , Traqueia/ultraestrutura , Animais , Axonema/metabolismo , Corpos Basais/metabolismo , Bovinos , Cílios/metabolismo , Proteínas dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Traqueia/metabolismo
3.
Elife ; 72018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30080137

RESUMO

Centrioles are cylindrical assemblies comprised of 9 singlet, doublet, or triplet microtubules, essential for the formation of motile and sensory cilia. While the structure of the cilium is being defined at increasing resolution, centriolar structure remains poorly understood. Here, we used electron cryo-tomography to determine the structure of mammalian (triplet) and Drosophila (doublet) centrioles. Mammalian centrioles have two distinct domains: a 200 nm proximal core region connected by A-C linkers, and a distal domain where the C-tubule is incomplete and a pair of novel linkages stabilize the assembly producing a geometry more closely resembling the ciliary axoneme. Drosophila centrioles resemble the mammalian core, but with their doublet microtubules linked through the A tubules. The commonality of core-region length, and the abrupt transition in mammalian centrioles, suggests a conserved length-setting mechanism. The unexpected linker diversity suggests how unique centriolar architectures arise in different tissues and organisms.


Assuntos
Centríolos/ultraestrutura , Cílios/ultraestrutura , Microscopia Crioeletrônica , Neurônios Receptores Olfatórios/ultraestrutura , Animais , Células CHO , Centríolos/química , Cílios/química , Cricetulus , Drosophila melanogaster , Tomografia com Microscopia Eletrônica , Microtúbulos/química , Microtúbulos/ultraestrutura , Neurônios Receptores Olfatórios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...