Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634721

RESUMO

Trapped ions for quantum information processing have been an area of intense study due to the extraordinarily high fidelity operations that have been reported experimentally. Specifically, barium trapped ions have been shown to have exceptional state-preparation and measurement fidelities. The 133Ba+ (I = 1/2) isotope in particular is a promising candidate for large-scale quantum computing experiments. However, a major pitfall with this isotope is that it is radioactive and is thus generally used in microgram quantities to satisfy safety regulations. We describe a new method for creating microgram barium chloride (BaCl2) ablation targets for use in trapped ion experiments and compare our procedure to previous methods. We outline two recipes for the fabrication of ablation targets that increase the production of neutral atoms for isotope-selective loading of barium ions. We show that heat-treatment of the ablation targets greatly increases the consistency at which neutral atoms can be produced, and we characterize the uniformity of these targets using trap-independent techniques such as energy dispersive x-ray spectroscopy and neutral fluorescence collection. Our comparison between fabrication techniques and the demonstration of consistent neutral fluorescence paves a path toward reliable loading of 133Ba+ in surface traps and opens opportunities for scalable quantum computing with this isotope.

2.
Rev Sci Instrum ; 94(3): 033201, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012771

RESUMO

Despite the progress in building sophisticated microfabricated ion traps, Paul traps employing needle electrodes retain their significance due to the simplicity of fabrication while producing high-quality systems suitable for quantum information processing, atomic clocks, etc. For low noise operations such as minimizing "excess micromotion," needles should be geometrically straight and aligned precisely with respect to each other. Self-terminated electrochemical etching, previously employed for fabricating ion-trap needle electrodes, employs a sensitive and time-consuming technique, resulting in a low success rate of usable electrodes. Here, we demonstrate an etching technique for the quick fabrication of straight and symmetric needles with a high success rate and a simple apparatus with reduced sensitivity to alignment imperfections. The novelty of our technique comes from using a two-step approach employing turbulent etching for fast shaping and slow etching/polishing for subsequent surface finish and tip cleaning. Using this technique, needle electrodes for an ion trap can be fabricated within a day, significantly reducing the setup time for a new apparatus. The needles fabricated via this technique have been used in our ion trap to achieve trapping lifetimes of several months.

3.
Environ Toxicol Chem ; 26(7): 1532-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17665696

RESUMO

Investigations were conducted to determine the influence of organic functional groups (i.e., methyl, phenyl) and valence state (i.e., III, V) on acute (48-h) arsenic toxicity in Daphnia pulex. These included toxicity texts with a suite of inorganic (arsenite, arsenate) and organic arsenicals (trivalent and pentavalent methylated arsenicals, roxarsone, p-arsanilic acid). Toxicity, based on median lethal concentrations (LC50 values), clustered the arsenicals into three groups and followed the order (most toxic to least toxic) of monomethylarsonous acid (MMA(III)), 120 microg/L > inorganic arsenic, 2,500 to 3,900 microg/L > pentavalent methylated arsenicals and phenylarsonic compounds, 13,800 to 15,700 microg/L. Pentavalent organic arsenicals were less toxic than inorganic forms regardless of functional group. In contrast, the trivalent organic species (M MA(III)) was the most toxic arsenical studied. These findings, which are the first to include an aquatic organism, add to the growing body of evidence that find that MMA(III) is an extremely toxic intermediate of arsenic methylation and contradict theories of arsenic toxicity that regard methylation as a detoxication event.


Assuntos
Arsênio/toxicidade , Daphnia/efeitos dos fármacos , Animais , Metilação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...