Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
2.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892016

RESUMO

Transforming growth factor beta (TGF-ß) is ubiquitously found in bone and plays a key role in bone turnover. Mice expressing constitutively active TGF-ß receptor type I (Mx1;TßRICA mice) are osteopenic. Here, we identified the candidate genes involved in bone turnover in Mx1;TßRICA mice using RNA sequencing analysis. A total of 285 genes, including 87 upregulated and 198 downregulated genes, were differentially expressed. According to the KEGG analysis, some genes were involved in osteoclast differentiation (Fcgr4, Lilrb4a), B cell receptor signaling (Cd72, Lilrb4a), and neutrophil extracellular trap formation (Hdac7, Padi4). Lilrb4 is related to osteoclast inhibition protein, whereas Hdac7 is a Runx2 corepressor that regulates osteoblast differentiation. Silencing Lilrb4 increased the number of osteoclasts and osteoclast marker genes. The knocking down of Hdac7 increased alkaline phosphatase activity, mineralization, and osteoblast marker genes. Therefore, our present study may provide an innovative idea for potential therapeutic targets and pathways in TßRI-associated bone loss.


Assuntos
Remodelação Óssea , Osteoclastos , Animais , Camundongos , Remodelação Óssea/genética , Osteoclastos/metabolismo , Osteoclastos/citologia , Osteoblastos/metabolismo , Regulação da Expressão Gênica , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Diferenciação Celular/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Perfilação da Expressão Gênica
3.
J Orthop Res ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899517

RESUMO

An in vivo animal model of a weight-bearing intra-articular implant is crucial to the study of implant osseointegration and aseptic loosening caused by osseointegration failure. Osseointegration, defined as a direct structural and functional attachment between living bone tissue and the surface of a load-carrying implant, is essential for implant stability and considered a prerequisite for the long-term clinical success of implants in total joint arthroplasty. Compared to large animal models, murine models offer extensive genetic tools for tracing cell differentiation and proliferation. The 18- to 22-week-old C57BL/6J background mice underwent either press-fitted or loose implantation of a titanium implant, achieving osseointegration or fibrous integration. A protocol was developed for both versions of the procedure, including a description of the relevant anatomy. Samples were subjected to microcomputed tomography and underwent biomechanical testing to access osseointegration. Lastly, samples were fixed and embedded for histological evaluation. The absence of mineralized tissue and weakened maximum pull-out force in loose implantation samples indicated that these implants were less mechanically stable compared to the control at 4 weeks postoperation. Histological analysis demonstrated extensive fibrotic tissue in the peri-implant area of loose implantation samples and excellent implant osseointegration in press-fitted samples at 4 weeks. Both mechanically stable and unstable hemiarthroplasty models with either osseous ingrowth or a robust periprosthetic fibrosis were achieved in mice. We hope that this model can help address current limitations for in vivo study of aseptic loosening and lead to necessary translational benefits.

4.
Hum Gene Ther ; 35(9-10): 329-341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38661537

RESUMO

The development of bone-targeting drug delivery systems holds immense promise for improving the treatment of skeletal diseases. By precisely delivering therapeutic agents to the affected areas of bone, these strategies can enhance drug efficacy, minimize off-target effects, and promote patient adherence, ultimately leading to improved treatment outcomes and an enhanced quality of life for patients. This review aims to provide an overview of the current state of affinity-based bone-targeting agents and recent breakthroughs in innovative bone-targeting adeno-associated virus (AAV) strategies to treat skeletal diseases in mice. In particular, this review will delve into advanced AAV engineering, including AAV serotype selection for bone targeting and capsid modifications for bone-specific tropism. Additionally, we will highlight recent advancements in AAV-mediated gene therapy for skeletal diseases and discuss challenges and future directions of this promising therapeutic approach.


Assuntos
Doenças Ósseas , Dependovirus , Sistemas de Liberação de Medicamentos , Terapia Genética , Vetores Genéticos , Dependovirus/genética , Humanos , Animais , Terapia Genética/métodos , Sistemas de Liberação de Medicamentos/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Doenças Ósseas/terapia , Osso e Ossos/metabolismo , Técnicas de Transferência de Genes , Camundongos
5.
J Bone Miner Res ; 39(2): 106-115, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477743

RESUMO

Artificial intelligence (AI) chatbots utilizing large language models (LLMs) have recently garnered significant interest due to their ability to generate humanlike responses to user inquiries in an interactive dialog format. While these models are being increasingly utilized to obtain medical information by patients, scientific and medical providers, and trainees to address biomedical questions, their performance may vary from field to field. The opportunities and risks these chatbots pose to the widespread understanding of skeletal health and science are unknown. Here we assess the performance of 3 high-profile LLM chatbots, Chat Generative Pre-Trained Transformer (ChatGPT) 4.0, BingAI, and Bard, to address 30 questions in 3 categories: basic and translational skeletal biology, clinical practitioner management of skeletal disorders, and patient queries to assess the accuracy and quality of the responses. Thirty questions in each of these categories were posed, and responses were independently graded for their degree of accuracy by four reviewers. While each of the chatbots was often able to provide relevant information about skeletal disorders, the quality and relevance of these responses varied widely, and ChatGPT 4.0 had the highest overall median score in each of the categories. Each of these chatbots displayed distinct limitations that included inconsistent, incomplete, or irrelevant responses, inappropriate utilization of lay sources in a professional context, a failure to take patient demographics or clinical context into account when providing recommendations, and an inability to consistently identify areas of uncertainty in the relevant literature. Careful consideration of both the opportunities and risks of current AI chatbots is needed to formulate guidelines for best practices for their use as source of information about skeletal health and biology.


Artificial intelligence chatbots are increasingly used as a source of information in health care and research settings due to their accessibility and ability to summarize complex topics using conversational language. However, it is still unclear whether they can provide accurate information for questions related to the medicine and biology of the skeleton. Here, we tested the performance of three prominent chatbots­ChatGPT, Bard, and BingAI­by tasking them with a series of prompts based on well-established skeletal biology concepts, realistic physician­patient scenarios, and potential patient questions. Despite their similarities in function, differences in the accuracy of responses were observed across the three different chatbot services. While in some contexts, chatbots performed well, and in other cases, strong limitations were observed, including inconsistent consideration of clinical context and patient demographics, occasionally providing incorrect or out-of-date information, and citation of inappropriate sources. With careful consideration of their current weaknesses, artificial intelligence chatbots offer the potential to transform education on skeletal health and science.


Assuntos
Inteligência Artificial , Osso e Ossos , Humanos , Osso e Ossos/fisiologia , Doenças Ósseas/terapia
6.
Protein Cell ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442300

RESUMO

Tissue-resident stem cells are essential for development and repair, and in the skeleton this function is fulfilled by recently identified skeletal stem cells (SSCs). However, recent work has identified that SSCs are not monolithic, with long bones, craniofacial sites, and the spine being formed by distinct stem cells. Recent studies have utilized techniques such as fluorescence-activated cell sorting (FACS), lineage tracing and single-cell sequencing to investigate the involvement of SSCs in bone development, homeostasis and disease. These investigations have allowed researchers to map the lineage commitment trajectory of SSCs in different parts of the body and at different time points. Furthermore, recent studies have shed light on the characteristics of SSCs in both physiological and pathological conditions. This review focuses on discussing the spatiotemporal distribution of SSCs and enhancing our understanding of the diversity and plasticity of SSCs by summarizing recent discoveries.

7.
Hum Gene Ther ; 35(9-10): 317-328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38534217

RESUMO

Adeno-associated viral (AAV) vectors have emerged as crucial tools in advancing gene therapy for skeletal diseases, offering the potential for sustained expression with low postinfection immunogenicity and pathogenicity. Preclinical studies support both the therapeutic efficacy and safety of these vectors, illustrating the promise of AAV-mediated gene therapy. Emerging technologies and innovations in AAV-mediated gene therapy strategies, such as gene addition, gene replacement, gene silencing, and gene editing, offer new approaches to clinical application. Recently, the increasing preclinical applications of AAV to rare skeletal diseases, such as fibrodysplasia ossificans progressiva (FOP) and osteogenesis imperfecta (OI), and prevalent bone diseases, such as osteoporosis, bone fracture, critical-sized bone defects, and osteoarthritis, have been reported. Despite existing limitations in clinical use, such as high cost and safety, the AAV-mediated gene transfer platform is a promising approach to deliver therapeutic gene(s) to the skeleton to treat skeletal disorders, including those otherwise intractable by other therapeutic approaches. This review provides a comprehensive overview of the therapeutic advancements, challenges, limitations, and solutions within AAV-based gene therapy for prevalent and rare skeletal diseases.


Assuntos
Doenças Ósseas , Dependovirus , Terapia Genética , Vetores Genéticos , Humanos , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Doenças Ósseas/terapia , Doenças Ósseas/genética , Animais , Técnicas de Transferência de Genes , Edição de Genes/métodos
8.
J Orthop Translat ; 45: 168-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38549808

RESUMO

Background: Recently, the osteogenic potential of Adiponectin-labeled adipogenic lineage progenitors (Adipoq-lineage progenitors) in bone marrow has been observed to support bone maintenance and repair. However, little is known about the function of Schnurri-3 (SHN3, also known as HIVEP3) in other mesenchymal lineage cells, apart from its negative regulation of bone formation on osteoblasts. Method: In this study, we used single-cell RNA sequencing (scRNA-seq) profiling to demonstrate that Adipoq-lineage progenitors express higher levels of Shn3 compared to other mesenchymal cell populations in mice and humans. To investigate the role of SHN3 in Adipoq-lineage progenitors, we generated a murine model specifically harboring a Shn3-deficient allele in Adipoq-expressing cells. Information of mice body weight was collected weekly to generate body weight curve. Bone phenotype was analyzed using micro-CT and histomorphometric studies. To eliminate the role of peripheral adipose tissue on bone, we collected adipose wet weight, performed intraperitoneal glucose tolerance tests and intraperitoneal insulin tolerance tests, and conducted a fat-transplantation study. Osteoblast and osteoclast functions were assessed through toluidine blue staining and TRAP staining, respectively. We further investigated the effect of Shn3 depletion on the differentiation of Adipoq-lineage progenitors through immunostaining and in vitro differentiation assays. Finally, we evaluated whether Shn3 deficiency in Adipoq-lineage progenitors affects the fracture healing process by generating bi-cortical femoral fracture models. Results: Depletion of Shn3 in Adipoq-lineage progenitors resulted in a significant increase in trabecular bone mass and bone formation in vivo, without disrupting whole-body energy metabolism and skeletal development. Consistent with these findings, both cell-lineage tracing and functional assays revealed that Shn3 ablation effectively shifted the cell fate of Adipoq-lineage progenitors towards an osteogenic phenotype in the bone marrow. Furthermore, in vivo studies demonstrated that the lack of Shn3 in Adipoq-lineage progenitors also enhanced bone fracture healing under pathological conditions. Conclusion: Overall, our findings provide a novel strategy for targeting the osteoanabolic potential of bone marrow Adipoq-lineage progenitors as a potential treatment for bone loss-related disorders. Translational potential of this article: We have identified a novel gene target that directs the cell fate of a previously identified non-osteogenic cell population under physiological conditions. This study not only expands the therapeutic value of Shn3 ablation in treating osteoporotic or traumatic bone diseases but also provides new insights into the contribution of bone marrow Adipoq-lineage progenitors to osteogenesis. Thus, this article further supports Shn3 silencing as a valuable approach to treat osteopenia and accelerate fracture healing (see graphical abstract).

9.
Adv Sci (Weinh) ; 11(18): e2303752, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311573

RESUMO

Loss of refreshment in nucleus pulposus (NP) cellularity leads to intervertebral disc (IVD) degeneration. Nevertheless, the cellular sequence of NP cell differentiation remains unclear, although an increasing body of literature has identified markers of NP progenitor cells (NPPCs). Notably, due to their fragility, the physical enrichment of NP-derived cells has limited conventional transcriptomic approaches in multiple studies. To overcome this limitation, a spatially resolved transcriptional atlas of the mouse IVD is generated via the 10x Genomics Visium platform dividing NP spots into two clusters. Based on this, most reported NPPC-markers, including Cathepsin K (Ctsk), are rare and predominantly located within the NP-outer subset. Cell lineage tracing further evidence that a small number of Ctsk-expressing cells generate the entire adult NP tissue. In contrast, Tie2, which has long suggested labeling NPPCs, is actually neither expressed in NP subsets nor labels NPPCs and their descendants in mouse models; consistent with this, an in situ sequencing (ISS) analysis validated the absence of Tie2 in NP tissue. Similarly, no Tie2-cre-mediated labeling of NPPCs is observed in an IVD degenerative mouse model. Altogether, in this study, the first spatial transcriptomic map of the IVD is established, thereby providing a public resource for bone biology.


Assuntos
Núcleo Pulposo , Células-Tronco , Transcriptoma , Animais , Camundongos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citologia , Células-Tronco/metabolismo , Transcriptoma/genética , Diferenciação Celular/genética , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Perfilação da Expressão Gênica/métodos , Modelos Animais de Doenças
10.
J Orthop Res ; 42(6): 1276-1282, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38245845

RESUMO

Large language model (LLM) chatbots possess a remarkable capacity to synthesize complex information into concise, digestible summaries across a wide range of orthopedic subject matter. As LLM chatbots become widely available they will serve as a powerful, accessible resource that patients, clinicians, and researchers may reference to obtain information about orthopedic science and clinical management. Here, we examined the performance of three well-known and easily accessible chatbots-ChatGPT, Bard, and Bing AI-in responding to inquiries relating to clinical management and orthopedic concepts. Although all three chatbots were found to be capable of generating relevant responses, ChatGPT outperformed Bard and BingAI in each category due to its ability to provide accurate and complete responses to orthopedic queries. Despite their promising applications in clinical management, shortcomings observed included incomplete responses, lack of context, and outdated information. Nonetheless, the ability for these LLM chatbots to address these inquires has largely yet to be evaluated and will be critical for understanding the risks and opportunities of LLM chatbots in orthopedics.


Assuntos
Ortopedia , Humanos , Inteligência Artificial
11.
Nat Commun ; 15(1): 363, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191471

RESUMO

In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.


Assuntos
Células-Tronco Mesenquimais , Neoplasias da Próstata , Humanos , Masculino , Animais , Camundongos , Neoplasias da Próstata/genética , Próstata , Células Estromais , Diferenciação Celular , Microambiente Tumoral/genética
12.
J Bone Joint Surg Am ; 106(8): 735-745, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38194481

RESUMO

BACKGROUND: Multiple animal models have previously been utilized to investigate anterior fusion techniques, but a mouse model has yet to be developed. The purpose of this study was to develop murine anterior interbody and posterolateral fusion techniques. METHODS: Mice underwent either anterior interbody or posterolateral spinal fusion. A protocol was developed for both procedures, including a description of the relevant anatomy. Samples were subjected to micro-computed tomography to assess fusion success and underwent biomechanical testing with use of 4-point bending. Lastly, samples were fixed and embedded for histologic evaluation. RESULTS: Surgical techniques for anterior interbody and posterolateral fusion were developed. The fusion rate was 83.3% in the anterior interbody model and 100% in the posterolateral model. Compared with a control, the posterolateral model exhibited a greater elastic modulus. Histologic analysis demonstrated endochondral ossification between bridging segments, further confirming the fusion efficacy in both models. CONCLUSIONS: The murine anterior interbody and posterolateral fusion models are efficacious and provide an ideal platform for studying the molecular and cellular mechanisms mediating spinal fusion. CLINICAL RELEVANCE: Given the extensive genetic tools available in murine disease models, use of fusion models such as ours can enable determination of the underlying genetic pathways involved in spinal fusion.


Assuntos
Vértebras Lombares , Fusão Vertebral , Animais , Camundongos , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Microtomografia por Raio-X , Osteogênese , Modelos Animais de Doenças
13.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069267

RESUMO

Chronic inflammation contributes to the development of skeletal disorders in patients with systemic lupus erythematosus (SLE). Activation of the host immune response stimulates osteoclast activity, which in turn leads to bone loss. Regenerating bone in the inflammatory microenvironments of SLE patients with critical bone defects remains a great challenge. In this study, we utilized lipopolysaccharide (LPS) to imitate locally and systemically pathogenic bacterial infection and examined the bone regeneration performance of LPS-associated mandibular and tibial bone regeneration impairment in FcγRIIB-/- mice. Our results indicated that a loss of FcγRIIB alleviates bone regeneration in both mandibles and tibiae. After LPS induction, FcγRIIB-/- mice were susceptible to impaired fracture healing in tibial and mandibular bones. LPS decreased the mineralization to collagen ratio in FcγRIIB-/- mice, indicating a mineralization defect during bone repair. An osteoblast-associated gene (Col1a1) was attenuated in FcγRIIB-deficient mice, whereas Bglap, Hhip, and Creb5 were further downregulated with LPS treatment in FcγRIIB-/- mice compared to FcγRIIB-/- mice. Alpl and Bglap expression was dcreased in osteoblasts derived from bone chips. An osteoclast-associated gene, Tnfsf11/Tnfrsf11 ratio, ewas increased in LPS-induced FcγRIIB-/- mice and in vitro. Furthermore, systemic LPS was relatively potent in stimulating production of pro-inflammatory cytokines including TNF-α, IL-6, and MCP-1 in FcγRIIB-/- mice compared to FcγRIIB-/- mice. The levels of TNF-α, IFN-ß, IL-1α, and IL-17A were increased, whereas IL-10 and IL-23 were decreased in FcγRIIB-/- mice treated locally with LPS. These findings suggest that both local and systemic LPS burden can exacerbate bone regeneration impairment, delay mineralization and skeletal repair, and induce inflammation in SLE patients.


Assuntos
Lipopolissacarídeos , Lúpus Eritematoso Sistêmico , Animais , Camundongos , Inflamação , Lipopolissacarídeos/toxicidade , Osteoclastos , Fator de Necrose Tumoral alfa
14.
Proc Natl Acad Sci U S A ; 120(46): e2312677120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931101

RESUMO

We have previously reported that the cortical bone thinning seen in mice lacking the Wnt signaling antagonist Sfrp4 is due in part to impaired periosteal apposition. The periosteum contains cells which function as a reservoir of stem cells and contribute to cortical bone expansion, homeostasis, and repair. However, the local or paracrine factors that govern stem cells within the periosteal niche remain elusive. Cathepsin K (Ctsk), together with additional stem cell surface markers, marks a subset of periosteal stem cells (PSCs) which possess self-renewal ability and inducible multipotency. Sfrp4 is expressed in periosteal Ctsk-lineage cells, and Sfrp4 global deletion decreases the pool of PSCs, impairs their clonal multipotency for differentiation into osteoblasts and chondrocytes and formation of bone organoids. Bulk RNA sequencing analysis of Ctsk-lineage PSCs demonstrated that Sfrp4 deletion down-regulates signaling pathways associated with skeletal development, positive regulation of bone mineralization, and wound healing. Supporting these findings, Sfrp4 deletion hampers the periosteal response to bone injury and impairs Ctsk-lineage periosteal cell recruitment. Ctsk-lineage PSCs express the PTH receptor and PTH treatment increases the % of PSCs, a response not seen in the absence of Sfrp4. Importantly, in the absence of Sfrp4, PTH-dependent increase in cortical thickness and periosteal bone formation is markedly impaired. Thus, this study provides insights into the regulation of a specific population of periosteal cells by a secreted local factor, and shows a central role for Sfrp4 in the regulation of Ctsk-lineage periosteal stem cell differentiation and function.


Assuntos
Osteogênese , Nicho de Células-Tronco , Camundongos , Animais , Catepsina K/metabolismo , Periósteo/metabolismo , Diferenciação Celular/genética , Via de Sinalização Wnt , Proteínas Proto-Oncogênicas/metabolismo
15.
Cells ; 12(20)2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37887332

RESUMO

Bone morphogenetic protein (BMP) gene delivery to Lewis rat lumbar intervertebral discs (IVDs) drives bone formation anterior and external to the IVD, suggesting the IVD is inhospitable to osteogenesis. This study was designed to determine if IVD destruction with a proteoglycanase, and/or generating an IVD blood supply by gene delivery of an angiogenic growth factor, could render the IVD permissive to intra-discal BMP-driven osteogenesis and fusion. Surgical intra-discal delivery of naïve or gene-programmed cells (BMP2/BMP7 co-expressing or VEGF165 expressing) +/- purified chondroitinase-ABC (chABC) in all permutations was performed between lumbar 4/5 and L5/6 vertebrae, and radiographic, histology, and biomechanics endpoints were collected. Follow-up anti-sFlt Western blotting was performed. BMP and VEGF/BMP treatments had the highest stiffness, bone production and fusion. Bone was induced anterior to the IVD, and was not intra-discal from any treatment. chABC impaired BMP-driven osteogenesis, decreased histological staining for IVD proteoglycans, and made the IVD permissive to angiogenesis. A soluble fragment of VEGF Receptor-1 (sFlt) was liberated from the IVD matrix by incubation with chABC, suggesting dysregulation of the sFlt matrix attachment is a possible mechanism for the chABC-mediated IVD angiogenesis we observed. Based on these results, the IVD can be manipulated to foster vascular invasion, and by extension, possibly osteogenesis.


Assuntos
Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Núcleo Pulposo/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Endogâmicos Lew , Disco Intervertebral/patologia , Proteoglicanas/metabolismo
16.
Nature ; 621(7979): 602-609, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704733

RESUMO

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Assuntos
Neoplasias da Mama , Linhagem da Célula , Metástase Neoplásica , Coluna Vertebral , Células-Tronco , Humanos , Neoplasias da Mama/patologia , Diferenciação Celular , Autorrenovação Celular , Metástase Neoplásica/patologia , Osteoblastos/citologia , Osteoblastos/patologia , Coluna Vertebral/citologia , Coluna Vertebral/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Biomarcadores
17.
Nature ; 621(7980): 804-812, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730988

RESUMO

Craniosynostosis is a group of disorders of premature calvarial suture fusion. The identity of the calvarial stem cells (CSCs) that produce fusion-driving osteoblasts in craniosynostosis remains poorly understood. Here we show that both physiologic calvarial mineralization and pathologic calvarial fusion in craniosynostosis reflect the interaction of two separate stem cell lineages; a previously identified cathepsin K (CTSK) lineage CSC1 (CTSK+ CSC) and a separate discoidin domain-containing receptor 2 (DDR2) lineage stem cell (DDR2+ CSC) that we identified in this study. Deletion of Twist1, a gene associated with craniosynostosis in humans2,3, solely in CTSK+ CSCs is sufficient to drive craniosynostosis in mice, but the sites that are destined to fuse exhibit an unexpected depletion of CTSK+ CSCs and a corresponding expansion of DDR2+ CSCs, with DDR2+ CSC expansion being a direct maladaptive response to CTSK+ CSC depletion. DDR2+ CSCs display full stemness features, and our results establish the presence of two distinct stem cell lineages in the sutures, with both populations contributing to physiologic calvarial mineralization. DDR2+ CSCs mediate a distinct form of endochondral ossification without the typical haematopoietic marrow formation. Implantation of DDR2+ CSCs into suture sites is sufficient to induce fusion, and this phenotype was prevented by co-transplantation of CTSK+ CSCs. Finally, the human counterparts of DDR2+ CSCs and CTSK+ CSCs display conserved functional properties in xenograft assays. The interaction between these two stem cell populations provides a new biologic interface for the modulation of calvarial mineralization and suture patency.


Assuntos
Craniossinostoses , Humanos , Camundongos , Animais , Craniossinostoses/genética , Osteogênese , Linhagem da Célula , Fenótipo , Células-Tronco
18.
Clin Chem ; 69(11): 1238-1246, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37664912

RESUMO

BACKGROUND: Artificial intelligence (AI) conversational agents, or chatbots, are computer programs designed to simulate human conversations using natural language processing. They offer diverse functions and applications across an expanding range of healthcare domains. However, their roles in laboratory medicine remain unclear, as their accuracy, repeatability, and ability to interpret complex laboratory data have yet to be rigorously evaluated. CONTENT: This review provides an overview of the history of chatbots, two major chatbot development approaches, and their respective advantages and limitations. We discuss the capabilities and potential applications of chatbots in healthcare, focusing on the laboratory medicine field. Recent evaluations of chatbot performance are presented, with a special emphasis on large language models such as the Chat Generative Pre-trained Transformer in response to laboratory medicine questions across different categories, such as medical knowledge, laboratory operations, regulations, and interpretation of laboratory results as related to clinical context. We analyze the causes of chatbots' limitations and suggest research directions for developing more accurate, reliable, and manageable chatbots for applications in laboratory medicine. SUMMARY: Chatbots, which are rapidly evolving AI applications, hold tremendous potential to improve medical education, provide timely responses to clinical inquiries concerning laboratory tests, assist in interpreting laboratory results, and facilitate communication among patients, physicians, and laboratorians. Nevertheless, users should be vigilant of existing chatbots' limitations, such as misinformation, inconsistencies, and lack of human-like reasoning abilities. To be effectively used in laboratory medicine, chatbots must undergo extensive training on rigorously validated medical knowledge and be thoroughly evaluated against standard clinical practice.


Assuntos
Serviços de Laboratório Clínico , Medicina , Humanos , Laboratórios Clínicos , Inteligência Artificial , Laboratórios
19.
Res Sq ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546916

RESUMO

Osteogenesis imperfecta (OI) is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding type collagen. While it is well known that OI reflects defects in the activity of bone-forming osteoblasts, it is currently unclear whether OI also reflects defects in the many other cell types comprising bone, including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility. Here, we find that numbers of skeletal stem cells (SSCs) and skeletal arterial endothelial cells (AECs) are augmented in Col1a2oim/oim mice, a well-studied animal model of moderate to severe OI, suggesting that disruption of a vascular SSC niche is a feature of OI pathogenesis. Moreover, crossing Col1a2oim/oim mice to mice lacking a negative regulator of skeletal angiogenesis and bone formation, Schnurri 3 (SHN3), not only corrected the SSC and AEC phenotypes but moreover robustly corrected the bone mass and spontaneous fracture phenotypes. As this finding suggested a strong therapeutic utility of SHN3 inhibition for the treatment of OI, a bone-targeting AAV was used to mediate Shn3 knockdown, rescuing the Col1a2oim/oim phenotype and providing therapeutic proof-of-concept for targeting SHN3 for the treatment of OI. Overall, this work both provides proof-of-concept for inhibition of the SHN3 pathway and more broadly addressing defects in the stem/osteoprogentior niche as is a strategy to treat OI.

20.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445982

RESUMO

Transforming growth factor beta (TGF-ß) is a key factor mediating the intercellular crosstalk between the hematopoietic stem cells and their microenvironment. Here, we investigated the skeletal phenotype of transgenic mice expressing constitutively active TGF-ß receptor type I under the control of Mx1-Cre (Mx1;TßRICA mice). µCT analysis showed decreased cortical thickness, and cancellous bone volume in both femurs and mandibles. Histomorphometric analysis confirmed a decrease in cancellous bone volume due to increased osteoclast number and decreased osteoblast number. Primary osteoblasts showed decreased ALP and mineralization. Constitutive TßRI activation increased osteoclast differentiation. qPCR analysis showed that Tnfsf11/Tnfrsf11b ratio, Ctsk, Sufu, and Csf1 were increased whereas Runx2, Ptch1, and Ptch2 were decreased in Mx1;TßRICA femurs. Interestingly, Gli1, Wnt3a, Sp7, Alpl, Ptch1, Ptch2, and Shh mRNA expression were reduced whereas Tnfsf11/Tnfrsf11b ratio was increased in Mx1;TßRICA mandibles. Similarly, osteoclast-related genes were increased in Mx1;TßRICA osteoclasts whereas osteoblast-related genes were reduced in Mx1;TßRICA osteoblasts. Western blot analysis indicated that SMAD2 and SMAD3 phosphorylation was increased in Mx1;TßRICA osteoblasts, and SMAD3 phosphorylation was increased in Mx1;TßRICA osteoclasts. CTSK was increased while RUNX2 and PTCH1 was decreased in Mx1;TßRICA mice. Microindentation analysis indicated decreased hardness in Mx1;TßRICA mice. Our study indicated that Mx1;TßRICA mice were osteopenic by increasing osteoclast number and decreasing osteoblast number, possibly by suppressing Hedgehog signaling pathways.


Assuntos
Doenças Ósseas Metabólicas , Subunidade alfa 1 de Fator de Ligação ao Core , Camundongos , Animais , Camundongos Transgênicos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Diferenciação Celular , Proteínas Hedgehog/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Doenças Ósseas Metabólicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...