Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645252

RESUMO

Pain hypersensitivity arises from the plasticity of peripheral and spinal somatosensory neurons, which modifies nociceptive input to the brain and alters pain perception. We utilized chronic calcium imaging of spinal dorsal horn neurons to determine how the representation of somatosensory stimuli in the anterolateral tract, the principal pathway transmitting nociceptive signals to the brain, changes between distinct pain states. In healthy conditions, we identify stable, narrowly tuned outputs selective for cooling or warming, and a neuronal ensemble activated by intense/noxious thermal and mechanical stimuli. Induction of an acute peripheral sensitization with capsaicin selectively and transiently retunes nociceptive output neurons to encode low-intensity stimuli. In contrast, peripheral nerve injury-induced neuropathic pain results in a persistent suppression of innocuous spinal outputs coupled with activation of a normally silent population of high-threshold neurons. These results demonstrate the differential modulation of specific spinal outputs to the brain during nociceptive and neuropathic pain states.

2.
Nat Commun ; 15(1): 1289, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346995

RESUMO

The cerebral cortex is vital for the processing and perception of sensory stimuli. In the somatosensory axis, information is received primarily by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted perception. This suggests that responsiveness to particular somatosensory stimuli occurs in a modality specific fashion and we sought to determine additional cortical substrates. In this work, we identify in a mouse model that inhibition of S2 output increases mechanical and heat, but not cooling sensitivity, in contrast to S1. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and heat sensitivity without affecting motor performance or anxiety. Taken together, we show that S2 is an essential cortical structure that governs mechanical and heat sensitivity.


Assuntos
Temperatura Alta , Córtex Somatossensorial , Camundongos , Animais , Córtex Somatossensorial/fisiologia , Córtex Cerebral
3.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352324

RESUMO

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, causing sensory loss and debilitating neuropathic pain 1,2 . Although the onset and progression of DPN have been linked with dyslipidemia and hyperglycemia 3 , the contribution of inflammation in the pathogenesis of DPN has not been investigated. Here, we use a High Fat High Fructose Diet (HFHFD) to model DPN and the diabetic metabolic syndrome in mice. Diabetic mice develop persistent heat hypoalgesia after three months, but a reduction in epidermal skin innervation only manifests at 6 months. Using single-cell sequencing, we find that CCR2+ macrophages infiltrate the sciatic nerves of diabetic mice well before axonal degeneration is detectable. We show that these infiltrating macrophages share gene expression similarities with nerve crush-induced macrophages 4 and express neurodegeneration-associated microglia marker genes 5 although there is no axon loss or demyelination. Inhibiting this macrophage recruitment in diabetic mice by genetically or pharmacologically blocking CCR2 signaling results in a more severe heat hypoalgesia and accelerated skin denervation. These findings reveal a novel neuroprotective recruitment of macrophages into peripheral nerves of diabetic mice that delays the onset of terminal axonal degeneration, thereby reducing sensory loss. Potentiating and sustaining this early neuroprotective immune response in patients represents, therefore, a potential means to reduce or prevent DPN.

4.
Dev Med Child Neurol ; 66(4): 456-468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37771170

RESUMO

AIM: To differentiate phenotypic features of individuals with CDKL5 deficiency disorder (CDD) from those of individuals with other infantile-onset epilepsies. METHOD: We performed a retrospective cohort study and ascertained individuals with CDD and comparison individuals with infantile-onset epilepsy who had epilepsy gene panel testing. We reviewed records, updated variant classifications, and compared phenotypic features. Wilcoxon rank-sum tests and χ2 or Fisher's exact tests were performed for between-cohort comparisons. RESULTS: We identified 137 individuals with CDD (110 females, 80.3%; median age at last follow-up 3 year 11 months) and 313 individuals with infantile-onset epilepsies (156 females, 49.8%; median age at last follow-up 5 years 2 months; 35% with genetic diagnosis). Features reported significantly more frequently in the CDD group than in the comparison cohort included developmental and epileptic encephalopathy (81% vs 66%), treatment-resistant epilepsy (95% vs 71%), sequential seizures (46% vs 6%), epileptic spasms (66% vs 42%, with hypsarrhythmia in 30% vs 48%), regression (52% vs 29%), evolution to Lennox-Gastaut syndrome (23% vs 5%), diffuse hypotonia (72% vs 36%), stereotypies (69% vs 11%), paroxysmal movement disorders (29% vs 17%), cerebral visual impairment (94% vs 28%), and failure to thrive (38% vs 22%). INTERPRETATION: CDD, compared with other suspected or confirmed genetic epilepsies presenting in the first year of life, is more often characterized by a combination of treatment-resistant epilepsy, developmental and epileptic encephalopathy, sequential seizures, spasms without hypsarrhythmia, diffuse hypotonia, paroxysmal movement disorders, cerebral visual impairment, and failure to thrive. Defining core phenotypic characteristics will improve precision diagnosis and treatment.


Assuntos
Encefalopatias , Epilepsia , Síndromes Epilépticas , Transtornos dos Movimentos , Espasmos Infantis , Estado Epiléptico , Feminino , Humanos , Masculino , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/genética , Insuficiência de Crescimento , Hipotonia Muscular/genética , Proteínas Serina-Treonina Quinases/genética , Estudos Retrospectivos , Convulsões , Espasmo , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Transtornos da Visão
5.
Res Sq ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37461707

RESUMO

The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.

6.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37293011

RESUMO

The cerebral cortex is vital for the perception and processing of sensory stimuli. In the somatosensory axis, information is received by two distinct regions, the primary (S1) and secondary (S2) somatosensory cortices. Top-down circuits stemming from S1 can modulate mechanical and cooling but not heat stimuli such that circuit inhibition causes blunted mechanical and cooling perception. Using optogenetics and chemogenetics, we find that in contrast to S1, an inhibition of S2 output increases mechanical and heat, but not cooling sensitivity. Combining 2-photon anatomical reconstruction with chemogenetic inhibition of specific S2 circuits, we discover that S2 projections to the secondary motor cortex (M2) govern mechanical and thermal sensitivity without affecting motor or cognitive function. This suggests that while S2, like S1, encodes specific sensory information, that S2 operates through quite distinct neural substrates to modulate responsiveness to particular somatosensory stimuli and that somatosensory cortical encoding occurs in a largely parallel fashion.

7.
Epilepsia ; 64(7): 1821-1832, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114835

RESUMO

OBJECTIVE: We aimed to assess the treatment response of infantile-onset epileptic spasms (ES) in CDKL5 deficiency disorder (CDD) vs other etiologies. METHODS: We evaluated patients with ES from the CDKL5 Centers of Excellence and the National Infantile Spasms Consortium (NISC), with onset from 2 months to 2 years, treated with adrenocorticotropic hormone (ACTH), oral corticosteroids, vigabatrin, and/or the ketogenic diet. We excluded children with tuberous sclerosis complex, trisomy 21, or unknown etiology with normal development because of known differential treatment responses. We compared the two cohorts for time to treatment and ES remission at 14 days and 3 months. RESULTS: We evaluated 59 individuals with CDD (79% female, median ES onset 6 months) and 232 individuals from the NISC database (46% female, median onset 7 months). In the CDD cohort, seizures prior to ES were common (88%), and hypsarrhythmia and its variants were present at ES onset in 34%. Initial treatment with ACTH, oral corticosteroids, or vigabatrin started within 1 month of ES onset in 27 of 59 (46%) of the CDD cohort and 182 of 232 (78%) of the NISC cohort (p < .0001). Fourteen-day clinical remission of ES was lower for the CDD group (26%, 7/27) than for the NISC cohort (58%, 106/182, p = .0002). Sustained ES remission at 3 months occurred in 1 of 27 (4%) of CDD patients vs 96 of 182 (53%) of the NISC cohort (p < .0001). Comparable results were observed with longer lead time (≥1 month) or prior treatment. Ketogenic diet, used within 3 months of ES onset, resulted in ES remission at 1 month, sustained at 3 months, in at least 2 of 13 (15%) individuals with CDD. SIGNIFICANCE: Compared to the broad group of infants with ES, children with ES in the setting of CDD often experience longer lead time to treatment and respond poorly to standard treatments. Development of alternative treatments for ES in CDD is needed.


Assuntos
Espasmos Infantis , Lactente , Humanos , Feminino , Masculino , Espasmos Infantis/tratamento farmacológico , Espasmos Infantis/genética , Vigabatrina/uso terapêutico , Tempo para o Tratamento , Anticonvulsivantes/uso terapêutico , Hormônio Adrenocorticotrópico/uso terapêutico , Espasmo/tratamento farmacológico , Corticosteroides/uso terapêutico , Resultado do Tratamento , Proteínas Serina-Treonina Quinases
8.
Pediatr Neurol ; 138: 71-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403551

RESUMO

BACKGROUND: Evidence of the impact of genetic diagnosis on medical management in individuals with previously unexplained epilepsy is lacking in the literature. Our goal was to determine the impact of genetic diagnosis on medical management in a cohort of individuals with early-onset epilepsy. METHODS: We performed detailed phenotyping of individuals with epilepsy who underwent clinical genetic testing with an epilepsy panel and/or exome sequencing at Boston Children's Hospital between 2012 and 2019. We assessed the impact of genetic diagnosis on medical management. RESULTS: We identified a genetic etiology in 152 of 602 (25%) individuals with infantile- or childhood-onset epilepsy who underwent next-generation sequencing. Diagnosis impacted medical management in at least one category for 72% of patients (110 of 152) and in more than one category in 34%. Treatment was impacted in 45% of individuals, including 36% with impact on antiseizure medication choice, 7% on use of disease-specific vitamin or metabolic treatments, 3% on pathway-driven off-label use of medications, and 10% on discussion of gene-specific clinical trials. Care coordination was impacted in 48% of individuals. Counseling on a change in prognosis was reported in 28% of individuals, and 1% of individuals had a correction of diagnosis. Impact was documented in 13 of 13 individuals with neurotypical development and in 55% of those with epilepsy onset after age two years. CONCLUSION: We demonstrated meaningful impact of genetic diagnosis on medical care and prognosis in over 70% of individuals, including those with neurotypical development and age of epilepsy onset after age two years.


Assuntos
Epilepsia , Criança , Humanos , Pré-Escolar , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Testes Genéticos , Prognóstico , Sequenciamento do Exoma , Sequenciamento de Nucleotídeos em Larga Escala
9.
J Neurodev Disord ; 13(1): 40, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530725

RESUMO

BACKGROUND: CDKL5 deficiency disorder (CDD) is associated with refractory infantile onset epilepsy, global developmental delay, and variable features that include sleep, behavioral disturbances, and movement disorders. Current treatment is primarily symptom-based and informed by experience in caring for this population. METHODS: We describe medication and non-medication approaches to treatment of epilepsy and additional key neurologic symptoms (sleep disturbances, behavioral issues, movement disorders, and swallowing dysfunction) in a cohort of 177 individuals meeting criteria for CDD, 154 evaluated at 4 CDKL5 Centers of Excellence in the USA and 40 identified through the NIH Natural History Study of Rett and Related Disorders. RESULTS: The four most frequently prescribed anti-seizure medications were broad spectrum, prescribed in over 50% of individuals. While the goal was not to ascertain efficacy, we obtained data from 86 individuals regarding response to treatment, with 2-week response achieved in 14-48% and sustained 3-month response in 5-36%, of those with known response. Additional treatments for seizures included cannabis derivatives, tried in over one-third of individuals, and clinical trial medications. In combination with pharmacological treatment, 50% of individuals were treated with ketogenic diet for attempted seizure control. Surgical approaches included vagus nerve stimulators, functional hemispherectomy, and corpus callosotomy, but numbers were too limited to assess response. Nearly one-third of individuals received pharmacologic treatment for sleep disturbances, 13% for behavioral dysregulation and movement disorders, and 43% had gastrostomy tubes. CONCLUSIONS: Treatment for neurologic features of CDD is currently symptom-based and empiric rather than CDD-specific, though clinical trials for CDD are emerging. Epilepsy in this population is highly refractory, and no specific anti-seizure medication was associated with improved seizure control. Ketogenic diet is commonly used in patients with CDD. While behavioral interventions are commonly instituted, information on the use of medications for sleep, behavioral management, and movement disorders is sparse and would benefit from further characterization and optimization of treatment approaches. The heterogeneity in treatment approaches highlights the need for systematic review and guidelines for CDD. Additional disease-specific and disease-modifying treatments are in development.


Assuntos
Epilepsia , Síndromes Epilépticas , Espasmos Infantis , Epilepsia/genética , Epilepsia/terapia , Síndromes Epilépticas/genética , Síndromes Epilépticas/terapia , Humanos , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Espasmos Infantis/terapia
10.
PeerJ ; 6: e4562, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29637021

RESUMO

Collisions with glass are a serious threat to avian life and are estimated to kill hundreds of millions of birds per year in the United States. We monitored 22 buildings at the Virginia Tech Corporate Research Center (VTCRC) in Blacksburg, Virginia, for collision fatalities from October 2013 through May 2015 and explored possible effects exerted by glass area and surrounding land cover on avian mortality. We documented 240 individuals representing 55 identifiable species that died due to collisions with windows at the VTCRC. The relative risk of fatal collisions at all buildings over the study period were estimated using a Bayesian hierarchical zero-inflated Poisson model adjusting for percentage of tree and lawn cover within 50 m of buildings, as well as for glass area. We found significant relationships between fatalities and surrounding lawn area (relative risk: 0.96, 95% credible interval: 0.93, 0.98) as well as glass area on buildings (RR: 1.30, 95% CI [1.05-1.65]). The model also found a moderately significant relationship between fatal collisions and the percent land cover of ornamental trees surrounding buildings (RR = 1.02, 95% CI [1.00-1.05]). Every building surveyed had at least one recorded collision death. Our findings indicate that birds collide with VTCRC windows during the summer breeding season in addition to spring and fall migration. The Ruby-throated Hummingbird (Archilochus colubris) was the most common window collision species and accounted for 10% of deaths. Though research has identified various correlates with fatal bird-window collisions, such studies rarely culminate in mitigation. We hope our study brings attention, and ultimately action, to address this significant threat to birds at the VTCRC and elsewhere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...