Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0297553, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306343

RESUMO

The purpose of our study was to assess the influence of a single high-intensity interval exercise (HIIE) bout in normoxia on plasma volume (PV) and consequent cycling performance in normobaric hypoxia (0.15 FiO2, simulating ~2,500 m). Eight males (VO2peak: 48.8 ± 3.4 mL/kg/min, 24.0 ± 1.6 years) completed a hypoxic 15 km cycling time trial (TT), followed by a crossover intervention of either HIIE (8x4 min cycling bouts at 85% of VO2peak) or CON (matched kJ production from HIIE at 50% of VO2peak). 48 hours post intervention, an identical TT was performed. Cardiovascular parameters were measured via impedance cardiography during each TT. Changes in PV was measured 24 and 48 hours post HIIE and CON. HIIE increased PV at 24 (4.1 ± 3.9%, P = 0.031) and 48 (6.7 ± 1.7, P = 0.006) hours post, while no difference was observed following the CON (1.3 ± 1.1% and 0.3 ± 2.8%). The higher PV led to an increased stroke volume (P = 0.03) and cardiac output (P = 0.02) during the hypoxic TT, while heart rate was not changed (P = 0.49). We observed no changes in time to completion (-0.63 ± 0.57 min, P = 0.054) and power output (7.37 ± 7.98 W, P = 0.078) between TTs. In the absence of environmental stress, a single bout of HIIE was an effective strategy to increase PV and reduce the cardiovascular strain during a cycling TT at moderate simulated altitude but did not impact hypoxic exercise performance. Trial registration: Clinical Trials ID: NCT05800808.


Assuntos
Hipóxia , Volume Plasmático , Humanos , Masculino , Débito Cardíaco , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Estudos Cross-Over
2.
Eur J Appl Physiol ; 124(5): 1523-1534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38150009

RESUMO

PURPOSE: Cold-induced vasodilation (CIVD) is an oscillatory rise in blood flow to glabrous skin that occurs in cold-exposed extremities. Dietary flavanols increase bioavailable nitric oxide, a proposed mediator of CIVD through active vasodilation and/or withdrawal of sympathetic vascular smooth muscle tone. However, no studies have examined the effects of flavanol intake on extremity skin perfusion during cold exposure. We tested the hypothesis that acute and 8-day flavanol supplementation would augment CIVD during single-digit cold water immersion (CWI). METHODS: Eleven healthy adults (24 ± 6 years; 10 M/1F) ingested cocoa flavanols (900 mg/day) or caffeine- and theobromine-matched placebo for 8 days in a double-blind, randomized, crossover design. On Days 1 and 8, CIVD was assessed 2 h post-treatment. Subjects immersed their 3rd finger in warm water (42 °C) for 15 min before CWI (4 °C) for 30 min, during which nail bed and finger pad skin temperature were measured. RESULTS: Flavanol ingestion had no effect on CIVD frequency (Day 1, Flavanol: 3 ± 2 vs. Placebo: 3 ± 2; Day 8, Flavanol: 3 ± 2 vs. Placebo: 3 ± 1) or amplitude (Day 1, Flavanol: 4.3 ± 1.7 vs. Placebo: 4.9 ± 2.6 °C; Day 8, Flavanol: 3.9 ± 1.9 vs. Placebo: 3.9 ± 2.0 °C) in the finger pad following acute or 8-day supplementation (P > 0.05). Furthermore, average, nadir, and apex finger pad temperatures during CWI were not different between treatments on Days 1 or 8 of supplementation (P > 0.05). Similarly, no differences in CIVD parameters were observed in the nail bed following supplementation (P > 0.05). CONCLUSION: These data suggest that cocoa flavanol ingestion does not alter finger CIVD. Clinical Trial Registration Clinicaltrials.gov Identifier: NCT04359082. April 24, 2020.


Assuntos
Temperatura Baixa , Suplementos Nutricionais , Vasodilatação , Humanos , Masculino , Feminino , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto , Método Duplo-Cego , Adulto Jovem , Estudos Cross-Over , Temperatura Cutânea/efeitos dos fármacos , Temperatura Cutânea/fisiologia , Cacau , Flavonóis/farmacologia , Flavonóis/administração & dosagem , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Chocolate
3.
Physiol Behav ; 263: 114126, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787810

RESUMO

Temperature sensitive receptors in the skin and deep body enable the detection of the external and internal environment, including the perception of thermal stimuli. Changes in heat balance require autonomic (e.g., sweating) and behavioral (e.g., seeking shade) thermoeffector initiation to maintain thermal homeostasis. Sex differences in body morphology can largely, but not entirely, account for divergent responses in thermoeffector and perceptual responses to environmental stress between men and women. Thus, it has been suggested that innate differences in thermosensation may exist between men and women. Our goal in this review is to summarize the existing literature that investigates localized and whole-body cold and heat exposure pertaining to sex differences in thermal sensitivity and perception, and the interplay between autonomic and behavioral thermoeffector responses. Overall, it appears that local differences in thermal sensitivity and perception are minimized, yet still apparent, when morphological characteristics are well-controlled. Sex differences in the early vasomotor response to environmental stress and subsequent changes in blood flow likely contribute to the heightened thermal awareness observed in women. However, the contribution of thermoreceptors to observed sex differences in thermal perception and thermoeffector function is unclear, as human studies investigating these questions have not been performed.


Assuntos
Regulação da Temperatura Corporal , Caracteres Sexuais , Feminino , Humanos , Masculino , Regulação da Temperatura Corporal/fisiologia , Sudorese , Pele/irrigação sanguínea , Temperatura Cutânea , Percepção/fisiologia
4.
Temperature (Austin) ; 9(1): 23-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655670

RESUMO

While it is clear that the ovarian hormones estradiol and progesterone have important influences on physiological thermoregulation in women, the influences of these hormones on responses to cold exposure are not well understood. Both heat conservation and heat production must increase to offset heat losses that decrease body temperature in cold ambient conditions. Cutaneous vasoconstriction conserves heat, whereas shivering and non-shivering thermogenesis produce heat - all as part of reflex physiological responses to cold exposure. Our goal in this brief review is to highlight existing knowledge and recent advances pertaining to sex and sex hormone influences on thermoeffector responses to cold stress. Estrogens have multiple influences that contribute to heat dissipation and a lower body temperature, while the influence of progesterone appears to primarily increase body temperature. Fluctuations in estrogen and progesterone across the menstrual cycle can alter the level at which body temperature is regulated. Recent evidence suggests that female reproductive hormones can modulate the cutaneous vasoconstrictor response, and may influence metabolic mechanisms such as substrate utilization during shivering and non-shivering thermogenesis. Overall, it appears that quantitative differences in cold thermoregulation between sexes are minimal when anthropometric measures are minimized, such that women do not have a strong "advantage" or "disadvantage" in terms of overall ability to tolerate cold. Thermoregulatory physiology in women during cold exposure remains relatively understudied and many mechanisms require further elucidation.

5.
J Therm Biol ; 97: 102898, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863451

RESUMO

OBJECTIVE: To examine the effectiveness of hot water immersion (HWI) as a heat acclimation strategy in comparison to time and temperature matched, exercise-heat acclimation (EHA). METHODS: 8 males performed heat stress tests (HST) (45 min of cycling at 50% of VO2max in 40 °C, 40% RH) before and after heat acclimation sessions. Acclimation sessions were either three consecutive bouts of HWI (40 min of submersion at 40 °C) or EHA (40 min of cycling at 50% VO2max in 40 °C, 40% RH). RESULTS: Average change in tympanic temperature (TTympanic) was significantly higher following HWI (2.1 °C ± 0.4) compared to EHA (1.5 °C ± 0.4) (P < 0.05). Decreases in peak heart rate (HR) (HWI: -10 bpm ± 8; EHA: -6 ± 7), average HR (-7 bpm ± 6; -3 ± 4), and average core temperature (-0.4 °C ± 0.3; -0.2 ± 0.4) were evident following acclimation (P < 0.05), but not different between interventions (P > 0.05). Peak rate of perceived exertion (RPEPeak) decreased for HWI and EHA (P < 0.05). Peak thermal sensation (TSPeak) decreased following HWI (P < 0.05) but was not different between interventions (P > 0.05). Plasma volume increased in both intervention groups (HWI: 5.9% ± 5.1; EHA: 5.4% ± 3.7) but was not statistically different (P > 0.05). CONCLUSION: HWI induced significantly greater thermal strain compared to EHA at equivalent temperatures during time-matched exposures. However, the greater degree of thermal strain did not result in between intervention differences for cardiovascular, thermoregulatory, or perceptual variables. Findings suggest three HWI sessions may be a potential means to lower HR, TCore, and perceptual strain during exercise in the heat.


Assuntos
Aclimatação/fisiologia , Ciclismo/fisiologia , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Imersão , Água , Adulto , Temperatura Corporal , Estudos Cross-Over , Frequência Cardíaca , Humanos , Masculino , Volume Plasmático , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...