Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 342: 113724, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915166

RESUMO

Temporal lobe epilepsy (TLE) is characterized by recurrent spontaneous seizures and behavioral comorbidities. Reduced hippocampal theta oscillations and hyperexcitability that contribute to cognitive deficits and spontaneous seizures are present beyond the sclerotic hippocampus in TLE. However, the mechanisms underlying compromised network oscillations and hyperexcitability observed in circuits remote from the sclerotic hippocampus are largely unknown. Cholecystokinin (CCK)-expressing basket cells (CCKBCs) critically participate in hippocampal theta rhythmogenesis, and regulate neuronal excitability. Thus, we examined whether CCKBCs were vulnerable in nonsclerotic regions of the ventral hippocampus remote from dorsal sclerotic hippocampus using the intrahippocampal kainate (IHK) mouse model of TLE, targeting unilateral dorsal hippocampus. We found a decrease in the number of CCK+ interneurons in ipsilateral ventral CA1 regions from epileptic mice compared to those from sham controls. We also found that the number of boutons from CCK+ interneurons was reduced in the stratum pyramidale, but not in other CA1 layers, of ipsilateral hippocampus in epileptic mice, suggesting that CCKBCs are vulnerable. Electrical recordings showed that synaptic connectivity and strength from surviving CCKBCs to CA1 pyramidal cells (PCs) were similar between epileptic mice and sham controls. In agreement with reduced CCKBC number in TLE, electrical recordings revealed a significant reduction in amplitude and frequency of IPSCs in CA1 PCs evoked by carbachol (commonly used to excite CCK+ interneurons) in ventral CA1 regions from epileptic mice versus sham controls. These findings suggest that loss of CCKBCs beyond the hippocampal lesion may contribute to hyperexcitability and compromised network oscillations in TLE.


Assuntos
Região CA1 Hipocampal/metabolismo , Colecistocinina/biossíntese , Epilepsia do Lobo Temporal/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Ácido Caínico/toxicidade , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Colecistocinina/genética , Modelos Animais de Doenças , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Expressão Gênica , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Neuropharmacology ; 162: 107787, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550457

RESUMO

Gamma network oscillations in the brain are fast rhythmic network oscillations in the gamma frequency range (~30-100 Hz), playing key roles in the hippocampus for learning, memory, and spatial processing. There is evidence indicating that GABAergic interneurons, including parvalbumin-expressing basket cells (PVBCs), contribute to cortical gamma oscillations through synaptic interactions with excitatory cells. However, the molecular, cellular, and circuit underpinnings underlying generation and maintenance of cortical gamma oscillations are largely elusive. Recent studies demonstrated that intrinsic and synaptic properties of GABAergic interneurons and excitatory cells are regulated by a slowly inactivating or non-inactivating sodium current (i.e., persistent sodium current, INaP), suggesting that INaP is involved in gamma oscillations. Here, we tested whether INaP plays a role in hippocampal gamma oscillations using pharmacological, optogenetic, and electrophysiological approaches. We found that INaP blockers, phenytoin (40 µM and 100 µM) and riluzole (10 µM), reduced gamma oscillations induced by optogenetic stimulation of CaMKII-expressing cells in CA1 networks. Whole-cell patch-clamp recordings further demonstrated that phenytoin (100 µM) reduced INaP and firing frequencies in both PVBCs and pyramidal cells without altering threshold and amplitude of action potentials, but increased rheobase in both cell types. These results suggest that INaP in pyramidal cells and PVBCs is required for hippocampal gamma oscillations, supporting a pyramidal-interneuron network gamma model. Phenytoin-mediated modulation of hippocampal gamma oscillations may be a mechanism underlying its anticonvulsant efficacy, as well as its contribution to cognitive impairments in epilepsy patients.


Assuntos
Região CA1 Hipocampal/fisiologia , Neurônios GABAérgicos/fisiologia , Ritmo Gama/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Ritmo Gama/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Optogenética , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Fenitoína/farmacologia , Células Piramidais/efeitos dos fármacos , Riluzol/farmacologia , Sódio/metabolismo
3.
Neuropharmacology ; 139: 150-162, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29964095

RESUMO

GABAergic interneurons in the hippocampus are critically involved in almost all hippocampal circuit functions including coordinated network activity. Somatostatin-expressing oriens-lacunosum moleculare (O-LM) interneurons are a major subtype of dendritically projecting interneurons in hippocampal subregions (e.g., CA1), and express group I metabotropic glutamate receptors (mGluRs), specifically mGluR1 and mGluR5. Group I mGluRs are thought to regulate hippocampal circuit functions partially through GABAergic interneurons. Previous studies suggest that a group I/II mGluR agonist produces slow supra-threshold membrane oscillations (<0.1 Hz), which are associated with high-frequency action potential (AP) discharges in O-LM interneurons. However, the properties and underlying mechanisms of these slow oscillations remain largely unknown. We performed whole-cell patch-clamp recordings from mouse interneurons in the stratum oriens/alveus (O/A interneurons) including CA1 O-LM interneurons. Our study revealed that the selective mGluR1/5 agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induced slow membrane oscillations (<0.1 Hz), which were associated with gamma frequency APs followed by AP-free perithreshold gamma oscillations. The selective mGluR1 antagonist (S)-(+)-α-Amino-4-carboxy-2-methylbenzeneacetic acid (LY367385) reduced the slow oscillations, and the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) partially blocked them. Blockade of nonselective cation-conducting transient receptor potential channels, L-type Ca2+ channels, or ryanodine receptors all abolished the slow oscillations, suggesting the involvement of multiple mechanisms. Our findings suggest that group I mGluR activation in O/A interneurons may play an important role in coordinated network activity, and O/A interneuron vulnerability to excitotoxicity, in disease states like seizures, is at least in part due to an excessive rise in intracellular Ca2+.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/metabolismo , Interneurônios/metabolismo , Potenciais da Membrana/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Ondas Encefálicas/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Moduladores de Transporte de Membrana/farmacologia , Camundongos Endogâmicos C57BL , Periodicidade , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Convulsões/metabolismo , Técnicas de Cultura de Tecidos , Canais de Potencial de Receptor Transitório/metabolismo
4.
Neuroscience ; 376: 80-93, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462702

RESUMO

The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB1BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB1BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations.


Assuntos
Ondas Encefálicas/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Interneurônios/citologia , Interneurônios/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Periodicidade , Técnicas de Cultura de Tecidos
6.
Neural Regen Res ; 8(29): 2763-74, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25206587

RESUMO

One of the well-defined sexually dimorphic structures in the brain is the sexually dimorphic nucleus, a cluster of cells located in the preoptic area of the hypothalamus. The rodent sexually dimorphic nucleus of the preoptic area can be delineated histologically using conventional Nissl staining or immunohistochemically using calbindin D28K immunoreactivity. There is increasing use of the bindin D28K-delineated neural cluster to define the sexually dimorphic nucleus of the preoptic area in rodents. Several mechanisms are proposed to underlie the processes that contribute to the sexual dimorphism (size difference) of the sexually dimorphic nucleus of the preoptic area. Recent evidence indicates that stem cell activity, including proliferation and migration presumably from the 3(rd) ventricle stem cell niche, may play a critical role in the postnatal development of the sexually dimorphic nucleus of the preoptic area and its distinguishing sexually dimorphic feature: a signifi-cantly larger volume in males. Sex hormones and estrogen-like compounds can affect the size of the sexually dimorphic nucleus of the preoptic area. Despite considerable research, it remains un-clear whether estrogen-like compounds and/or sex hormones increase size of the sexually dimor-phic nucleus of the preoptic area via an increase in stem cell activity originating from the 3(rd) ventricle stem cell niche.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...