Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0162423, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966223

RESUMO

IMPORTANCE: Production of ethanol from sugars and yeast is an ancient, ostensibly simple process. The source of sugars varies depending on the desired product and can include fruits, vegetables, molasses, honey, or grains, among other things. The source of yeast can be natural in the case of spontaneous ferments, but dry yeast addition is typical for large-scale fermentations. While the polymicrobial nature of some alcoholic fermentations is appreciated (e.g., for wine), most grain-based ethanol producers view microbes, apart from the added yeast, as "contaminants" meant to be controlled in order to maximize efficiency of ethanol production per unit of sugar. Nonetheless, despite rigorous cleaning-in-place measures and cooking the mash, bacteria are routinely cultured from these fermentations. We now know that bacteria can contribute to fermentation efficiency on an industrial scale, yet nothing is known about the makeup and stability of microbial communities in distilled spirit fermentations. The work here establishes the roles of mash recipes and distillery practices in microbial community assembly and dynamics over the course of fermentation. This represents an important first step in appreciating the myriad roles of bacteria in the production of distilled spirits.


Assuntos
Etanol , Saccharomyces cerevisiae , Fermentação , Bactérias/genética , Açúcares
2.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30054366

RESUMO

We show for soil bacterium Enterobacter soli LF7 that the possession of an indole-3-acetic acid catabolic (iac) gene cluster is causatively linked to the ability to utilize the plant hormone indole-3-acetic acid (IAA) as a carbon and energy source. Genome-wide transcriptional profiling by mRNA sequencing revealed that these iac genes, chromosomally arranged as iacHABICDEFG and coding for the transformation of IAA to catechol, were the most highly induced (>29-fold) among the relatively few (<1%) differentially expressed genes in response to IAA. Also highly induced and immediately downstream of the iac cluster were genes for a major facilitator superfamily protein (mfs) and enzymes of the ß-ketoadipate pathway (pcaIJD-catBCA), which channels catechol into central metabolism. This entire iacHABICDEFG-mfs-pcaIJD-catBCA gene set was constitutively expressed in an iacR deletion mutant, confirming the role of iacR, annotated as coding for a MarR-type regulator and located upstream of iacH, as a repressor of iac gene expression. In E. soli LF7 carrying the DNA region upstream of iacH fused to a promoterless gfp gene, green fluorescence accumulated in response to IAA at concentrations as low as 1.6 µM. The iacH promoter region also responded to chlorinated IAA, but not other aromatics tested, indicating a narrow substrate specificity. In an iacR deletion mutant, gfp expression from the iacH promoter region was constitutive, consistent with the predicted role of iacR as a repressor. A deletion analysis revealed putative -35/-10 promoter sequences upstream of iacH, as well as a possible binding site for the IacR repressor.IMPORTANCE Bacterial iac genes code for the enzymatic conversion of the plant hormone indole-3-acetic acid (IAA) to catechol. Here, we demonstrate that the iac genes of soil bacterium Enterobacter soli LF7 enable growth on IAA by coarrangement and coexpression with a set of pca and cat genes that code for complete conversion of catechol to central metabolites. This work contributes in a number of novel and significant ways to our understanding of iac gene biology in bacteria from (non-)plant environments. More specifically, we show that LF7's response to IAA involves derepression of the MarR-type transcriptional regulator IacR, which is quite fast (less than 25 min upon IAA exposure), highly specific (only in response to IAA and chlorinated IAA, and with few genes other than iac, cat, and pca induced), relatively sensitive (low micromolar range), and seemingly tailored to exploit IAA as a source of carbon and energy.


Assuntos
Proteínas de Bactérias/genética , Enterobacter/genética , Enterobacter/metabolismo , Regulação Bacteriana da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Microbiologia do Solo , Proteínas de Bactérias/metabolismo , Enterobacter/isolamento & purificação , Família Multigênica , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas
3.
J Chem Ecol ; 39(7): 942-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23881445

RESUMO

Pseudomonas putida 1290 is a model organism for the study of bacterial degradation of the plant hormone indole-3-acetic acid (IAA). This property is encoded by the iac gene cluster. Insertional inactivation and/or deletion of individual iac genes and heterologous expression of the gene cluster in Escherichia coli were combined with mass spectrometry to demonstrate that iac-based degradation of IAA is likely to involve 2-hydroxy-IAA, 3-hydroxy-2-oxo-IAA, and catechol as intermediates. The first gene of the cluster, iacA encodes for the first step in the pathway, and also can convert indole to indoxyl to produce the blue pigment indigo. Transcriptional profiling of iac genes in P. putida 1290 revealed that they were induced in the presence of IAA. Based on results with an iacR knockout, we propose that this gene codes for a repressor of iacA expression and that exposure to IAA relieves this repression. Transformation of P. putida KT2440 (which cannot degrade IAA) with the iac gene cluster conferred the ability to grow on IAA as a sole source of carbon and energy, but not the ability to chemotaxi towards IAA. We could show such tactic response for P. putida 1290, thus representing the first demonstration of bacterial chemotaxis towards IAA. We discuss the ecological significance of our findings, and specifically the following question: under what circumstances do bacteria with the ability to degrade, recognize, and move towards IAA have a selective advantage?


Assuntos
Genes Bacterianos , Ácidos Indolacéticos/metabolismo , Pseudomonas putida/genética , Quimiotaxia , Escherichia coli , Expressão Gênica , Fenótipo , Plasmídeos , Pseudomonas putida/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...