Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 1085: 197-207, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17182936

RESUMO

Our objective was to test vibrometry as a means to measure changes in aneurysm sac pressure in an in vitro aneurysm model. Explanted porcine abdominal aortas and nitrile rubber tubes were used to model an aneurysm sac. An ultrasound beam was used to vibrate the surface of the aneurysm model. The motion generated on the surface was detected either by reflected laser light or by a second ultrasound probe. This was recorded at different aneurysm pressures. The phase of the propagating wave was measured to assess changes in velocity and to see if there was a correlation with aneurysm pressure. The cumulative phase shift detected by laser or Doppler correlated well with increasing hydrostatic pressure in both the rubber and the porcine aorta model. The square of the mean pressure correlated well with the cumulative phase shift when dynamic pressure was generated by a pump. However, the pulse pressure was poorly correlated with the cumulative phase shift. Noninvasive measurement of changes in aortic aneurysm sac tension is feasible in an in vitro setting using the concept of vibrometry. This could potentially be used to noninvasively detect wall stress in native aneurysms and endotension after endovascular aneurysm repair (EVAR) and to predict the risk of rupture.


Assuntos
Aneurisma/diagnóstico por imagem , Ciência de Laboratório Médico/instrumentação , Ciência de Laboratório Médico/métodos , Animais , Aorta/diagnóstico por imagem , Nitritos , Borracha , Estresse Mecânico , Suínos , Ultrassonografia , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...