Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Biol Sci ; 290(2000): 20230897, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37282535

RESUMO

Modern agriculture has drastically changed global landscapes and introduced pressures on wildlife populations. Policy and management of agricultural systems has changed over the last 30 years, a period characterized not only by intensive agricultural practices but also by an increasing push towards sustainability. It is crucial that we understand the long-term consequences of agriculture on beneficial invertebrates and assess if policy and management approaches recently introduced are supporting their recovery. In this study, we use large citizen science datasets to derive trends in invertebrate occupancy in Great Britain between 1990 and 2019. We compare these trends between regions of no- (0%), low- (greater than 0-50%) and high-cropland (greater than 50%) cover, which includes arable and horticultural crops. Although we detect general declines, invertebrate groups are declining most strongly in high-cropland cover regions. This suggests that even in the light of improved policy and management over the last 30 years, the way we are managing cropland is failing to conserve and restore invertebrate communities. New policy-based drivers and incentives are required to support the resilience and sustainability of agricultural ecosystems. Post-Brexit changes in UK agricultural policy and reforms under the Environment Act offer opportunities to improve agricultural landscapes for the benefit of biodiversity and society.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , União Europeia , Reino Unido , Biodiversidade , Agricultura , Invertebrados , Produtos Agrícolas
3.
Sci Rep ; 12(1): 14331, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995928

RESUMO

We use a national citizen science monitoring scheme to quantify how agricultural intensification affects honeybee diet breadth (number of plant species). To do this we used DNA metabarcoding to identify the plants present in 527 honey samples collected in 2019 across Great Britain. The species richness of forage plants was negatively correlated with arable cropping area, although this was only found early in the year when the abundance of flowering plants was more limited. Within intensively farmed areas, honeybee diets were dominated by Brassica crops (including oilseed rape). We demonstrate how the structure and complexity of honeybee foraging relationships with plants is negatively affected by the area of arable crops surrounding hives. Using information collected from the beekeepers on the incidence of an economically damaging bee disease (Deformed Wing Virus) we found that the occurrence of this disease increased where bees foraged in agricultural land where there was a high use of foliar insecticides. Understanding impacts of land use on resource availability is fundamental to assessing long-term viability of pollinator populations. These findings highlight the importance of supporting temporally timed resources as mitigation strategies to support wider pollinator population viability.


Assuntos
Ciência do Cidadão , Praguicidas , Animais , Abelhas , Produtos Agrícolas , Praguicidas/toxicidade , Polinização , Vírus de RNA , Estações do Ano
4.
Curr Biol ; 31(20): 4627-4634.e3, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34411527

RESUMO

Declines in invertebrate biodiversity1,2 pose a significant threat to key ecosystem services.3-5 Current analyses of biodiversity often focus on taxonomic diversity (e.g., species richness),6,7 which does not account for the functional role of a species. Functional diversity of species' morphological or behavioral traits is likely more relevant to ecosystem service delivery than taxonomic diversity, as functional diversity has been found to be a key driver of a number of ecosystem services including decomposition and pollination.8-12 At present, we lack a good understanding of long-term and large-scale changes in functional diversity, which limits our capacity to determine the vulnerability of key ecosystem services with ongoing biodiversity change. Here we derive trends in functional diversity and taxonomic diversity over a 45-year period across Great Britain for species supporting freshwater aquatic functions, pollination, natural pest control, and agricultural pests (a disservice). Species supporting aquatic functions showed a synchronous collapse and recovery in functional and taxonomic diversity. In contrast, pollinators showed an increase in taxonomic diversity, but a decline and recovery in functional diversity. Pest control agents and pests showed greater stability in functional diversity over the assessment period. We also found that functional diversity could appear stable or show patterns of recovery, despite ongoing changes in the composition of traits among species. Our results suggest that invertebrate assemblages can show considerable variability in their functional structure over time at a national scale, which provides an important step in determining the long-term vulnerability of key ecosystem services with ongoing biodiversity change.


Assuntos
Ecossistema , Invertebrados , Agricultura , Animais , Biodiversidade , Polinização
5.
Insects ; 11(3)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197403

RESUMO

Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are dependent. Such effects may potentially be exacerbated by other environmental stresses, such as exposure to widely used agro-chemicals. To determine whether environmental stressors interact to affect pollination services, we carried out field cage experiments on the buff-tailed bumble bee (Bombus terrestris). Using a Bayesian approach, we assessed whether heat stress (colonies maintained at an ambient temperature of 25 °C or 31 °C) and insecticide exposure (5 ng g-1 of the neonicotinoid insecticide clothianidin) could induce behavioural changes that affected pollination of faba bean (Vicia faba). Only the bumble bee colonies and not the plants were exposed to the environmental stress treatments. Bean plants exposed to heat-stressed bumble bee colonies (31 °C) had a lower proportional pod set compared to colonies maintained at 25 °C. There was also weak evidence that heat stressed colonies caused lower total bean weight. Bee exposure to clothianidin was found to have no clear effect on plant yields, either individually or as part of an interaction. We identified no effect of either colony stressor on bumble bee foraging behaviours. Our results suggest that extreme heat stress at the colony level may impact on pollination services. However, as the effect for other key yield parameters was weaker (e.g. bean yields), our results are not conclusive. Overall, our study highlights the need for further research on how environmental stress affects behavioural interactions in plant-pollinator systems that could impact on crop yields.

6.
Ecology ; 99(8): 1771-1782, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29727489

RESUMO

The use of pesticides within agricultural ecosystems has led to wide concern regarding negative effects on the environment. One possible alternative is the use of predators of pest species that naturally occur within agricultural ecosystems. However, the mechanistic basis for how species can be manipulated in order to maximize pest control remains unclear. We carried out a meta-analysis of 51 studies that manipulated predator species richness in reference to suppression of herbivore prey to determine which components of predator diversity affect pest control. Overall, functional diversity (FD) based on predator's habitat domain, diet breadth and hunting strategy was ranked as the most important variable. Our analysis showed that increases in FD in polycultures led to greater prey suppression compared to both the mean of the component predator species, and the most effective predator species, in monocultures. Further analysis of individual traits indicated these effects are likely to be driven by broad niche differentiation and greater resource exploitation in functionally diverse predator communities. A decoupled measure of phylogenetic diversity, whereby the overlap in variation with FD was removed, was not found to be an important driver of prey suppression. Our results suggest that increasing FD in predatory invertebrates will help maximize pest control ecosystem services in agricultural ecosystems, with the potential to increase suppression above that of the most effective predator species.


Assuntos
Ecossistema , Comportamento Predatório , Animais , Cadeia Alimentar , Herbivoria , Invertebrados , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...