Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(5): e0028624, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624196

RESUMO

Host-parasite interactions are highly susceptible to changes in temperature due to mismatches in species thermal responses. In nature, parasites often exist in communities, and responses to temperature are expected to vary between host-parasite pairs. Temperature change thus has consequences for both host-parasite dynamics and parasite-parasite interactions. Here, we investigate the impact of warming (37°C, 40°C, and 42°C) on parasite life-history traits and competition using the opportunistic bacterial pathogen Pseudomonas aeruginosa (host) and a panel of three genetically diverse lytic bacteriophages (parasites). We show that phages vary in their responses to temperature. While 37°C and 40°C did not have a major effect on phage infectivity, infection by two phages was restricted at 42°C. This outcome was attributed to disruption of different phage life-history traits including host attachment and replication inside hosts. Furthermore, we show that temperature mediates competition between phages by altering their competitiveness. These results highlight phage trait variation across thermal regimes with the potential to drive community dynamics. Our results have important implications for eukaryotic viromes and the design of phage cocktail therapies.IMPORTANCEMammalian hosts often elevate their body temperatures through fevers to restrict the growth of bacterial infections. However, the extent to which fever temperatures affect the communities of phages with the ability to parasitize those bacteria remains unclear. In this study, we investigate the impact of warming across a fever temperature range (37°C, 40°C, and 42°C) on phage life-history traits and competition using a bacterium (host) and bacteriophage (parasite) system. We show that phages vary in their responses to temperature due to disruption of different phage life-history traits. Furthermore, we show that temperature can alter phage competitiveness and shape phage-phage competition outcomes. These results suggest that fever temperatures have the potential to restrict phage infectivity and drive phage community dynamics. We discuss implications for the role of temperature in shaping host-parasite interactions more widely.


Assuntos
Pseudomonas aeruginosa , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/fisiologia , Bacteriófagos/fisiologia , Temperatura Alta , Fagos de Pseudomonas/fisiologia , Fagos de Pseudomonas/crescimento & desenvolvimento , Características de História de Vida , Temperatura
3.
ISME J ; 17(3): 443-452, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635489

RESUMO

Volatile organic compounds (VOCs) produced by soil bacteria have been shown to exert plant pathogen biocontrol potential owing to their strong antimicrobial activity. While the impact of VOCs on soil microbial ecology is well established, their effect on plant pathogen evolution is yet poorly understood. Here we experimentally investigated how plant-pathogenic Ralstonia solanacearum bacterium adapts to VOC-mixture produced by a biocontrol Bacillus amyloliquefaciens T-5 bacterium and how these adaptations might affect its virulence. We found that VOC selection led to a clear increase in VOC-tolerance, which was accompanied with cross-tolerance to several antibiotics commonly produced by soil bacteria. The increasing VOC-tolerance led to trade-offs with R. solanacearum virulence, resulting in almost complete loss of pathogenicity in planta. At the genetic level, these phenotypic changes were associated with parallel mutations in genes encoding lipopolysaccharide O-antigen (wecA) and type-4 pilus biosynthesis (pilM), which both have been linked with outer membrane permeability to antimicrobials and plant pathogen virulence. Reverse genetic engineering revealed that both mutations were important, with pilM having a relatively larger negative effect on the virulence, while wecA having a relatively larger effect on increased antimicrobial tolerance. Together, our results suggest that microbial VOCs are important drivers of bacterial evolution and could potentially be used in biocontrol to select for less virulent pathogens via evolutionary trade-offs.


Assuntos
Bacillus , Ralstonia solanacearum , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/farmacologia , Virulência/genética , Adaptação Fisiológica , Solo , Ralstonia solanacearum/genética , Doenças das Plantas/microbiologia
4.
BMC Genomics ; 23(1): 689, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36199029

RESUMO

BACKGROUND: Ralstonia solanacearum species complex (RSSC) strains are destructive plant pathogenic bacteria and the causative agents of bacterial wilt disease, infecting over 200 plant species worldwide. In addition to chromosomal genes, their virulence is mediated by mobile genetic elements including integrated DNA of bacteriophages, i.e., prophages, which may carry fitness-associated auxiliary genes or modulate host gene expression. Although experimental studies have characterised several prophages that shape RSSC virulence, the global diversity, distribution, and wider functional gene content of RSSC prophages are unknown. In this study, prophages were identified in a diverse collection of 192 RSSC draft genome assemblies originating from six continents. RESULTS: Prophages were identified bioinformatically and their diversity investigated using genetic distance measures, gene content, GC, and total length. Prophage distributions were characterised using metadata on RSSC strain geographic origin and lineage classification (phylotypes), and their functional gene content was assessed by identifying putative prophage-encoded auxiliary genes. In total, 313 intact prophages were identified, forming ten genetically distinct clusters. These included six prophage clusters with similarity to the Inoviridae, Myoviridae, and Siphoviridae phage families, and four uncharacterised clusters, possibly representing novel, previously undescribed phages. The prophages had broad geographical distributions, being present across multiple continents. However, they were generally host phylogenetic lineage-specific, and overall, prophage diversity was proportional to the genetic diversity of their hosts. The prophages contained many auxiliary genes involved in metabolism and virulence of both phage and bacteria. CONCLUSIONS: Our results show that while RSSC prophages are highly diverse globally, they make lineage-specific contributions to the RSSC accessory genome, which could have resulted from shared coevolutionary history.


Assuntos
Bacteriófagos , Ralstonia solanacearum , Bacteriófagos/genética , Humanos , Filogenia , Prófagos/genética , Ralstonia solanacearum/genética , Virulência/genética
5.
Evol Appl ; 15(5): 735-750, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35603031

RESUMO

Crop losses to plant pathogens are a growing threat to global food security and more effective control strategies are urgently required. Biofumigation, an agricultural technique where Brassica plant tissues are mulched into soils to release antimicrobial plant allelochemicals called isothiocyanates (ITCs), has been proposed as an environmentally friendly alternative to agrochemicals. Whilst biofumigation has been shown to suppress a range of plant pathogens, its effects on plant pathogenic bacteria remain largely unexplored. Here, we used a laboratory model system to compare the efficacy of different types of ITCs against Ralstonia solanacearum plant bacterial pathogen. Additionally, we evaluated the potential for ITC-tolerance evolution under high, intermediate, and low transfer frequency ITC exposure treatments. We found that allyl-ITC was the most efficient compound at suppressing R. solanacearum growth, and its efficacy was not improved when combined with other types of ITCs. Despite consistent pathogen growth suppression, ITC tolerance evolution was observed in the low transfer frequency exposure treatment, leading to cross-tolerance to ampicillin beta-lactam antibiotic. Mechanistically, tolerance was linked to insertion sequence movement at four positions in genes that were potentially associated with stress responses (H-NS histone like protein), cell growth and competitiveness (acyltransferase), iron storage ([2-Fe-2S]-binding protein) and calcium ion sequestration (calcium-binding protein). Interestingly, pathogen adaptation to the growth media also indirectly selected for increased ITC tolerance through potential adaptations linked with metabolism and antibiotic resistance (dehydrogenase-like protein) and transmembrane protein movement (Tat pathway signal protein). Together, our results suggest that R. solanacearum can rapidly evolve tolerance to allyl-ITC plant allelochemical which could constrain the long-term efficiency of biofumigation biocontrol and potentially shape pathogen evolution with plants.

6.
J Evol Biol ; 34(10): 1624-1636, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34378263

RESUMO

Understanding how species can thrive in a range of environments is a central challenge for evolutionary ecology. There is strong evidence for local adaptation along large-scale ecological clines in insects. However, potential adaptation among neighbouring populations differing in their environment has been studied much less. We used RAD sequencing to quantify genetic divergence and clustering of ten populations of the field cricket Gryllus campestris in the Cantabrian Mountains of northern Spain, and an outgroup on the inland plain. Our populations were chosen to represent replicate high and low altitude habitats. We identified genetic clusters that include both high and low altitude populations indicating that the two habitat types do not hold ancestrally distinct lineages. Using common-garden rearing experiments to remove environmental effects, we found evidence for differences between high and low altitude populations in physiological and life-history traits. As predicted by the local adaptation hypothesis, crickets with parents from cooler (high altitude) populations recovered from periods of extreme cooling more rapidly than those with parents from warmer (low altitude) populations. Growth rates also differed between offspring from high and low altitude populations. However, contrary to our prediction that crickets from high altitudes would grow faster, the most striking difference was that at high temperatures, growth was fastest in individuals from low altitudes. Our findings reveal that populations a few tens of kilometres apart have independently evolved adaptations to their environment. This suggests that local adaptation in a range of traits may be commonplace even in mobile invertebrates at scales of a small fraction of species' distributions.


Assuntos
Gryllidae , Aclimatação , Adaptação Fisiológica/genética , Altitude , Animais , Evolução Biológica , Gryllidae/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...