Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(12): 5215-5224, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38842599

RESUMO

We model the autoionization of water by determining the free energy of hydration of the major intermediate species of water ions. We represent the smallest ions─the hydroxide ion OH-, the hydronium ion H3O+, and the Zundel ion H5O2+─by bonded models and the more extended ionic structures by strong nonbonded interactions (e.g., the Eigen H9O4+ = H3O+ + 3(H2O) and the Stoyanov H13O6+ = H5O2+ + 4(H2O)). Our models are faithful to the precise QM energies and their components to within 1% or less. Using the calculated free energies and atomization energies, we compute the pKa of pure water from first principles as a consistency check and arrive at a value within 1.3 log units of the experimental one. From these calculations, we conclude that the hydronium ion, and its hydrated state, the Eigen cation, are the dominant species in the water autoionization process.

2.
J Phys Chem A ; 128(4): 807-812, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232765

RESUMO

We present a formalism of a neural network encoding bonded interactions in molecules. This intramolecular encoding is consistent with the models of intermolecular interactions previously designed by this group. Variants of the encoding fed into a corresponding neural network may be used to economically improve the representation of torsional degrees of freedom in any force field. We test the accuracy of the reproduction of the ab initio potential energy surface on a set of conformations of two dipeptides, methyl-capped ALA and ASP, in several scenarios. The encoding, either alone or in conjunction with an analytical potential, improves agreement with ab initio energies that are on par with those of other neural network-based potentials. Using the encoding and neural nets in tandem with an analytical model places the agreements firmly within "chemical accuracy" of ±0.5 kcal/mol.


Assuntos
Dipeptídeos , Redes Neurais de Computação , Conformação Molecular
3.
J Am Chem Soc ; 145(43): 23620-23629, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856313

RESUMO

A key goal of molecular modeling is the accurate reproduction of the true quantum mechanical potential energy of arbitrary molecular ensembles with a tractable classical approximation. The challenges are that analytical expressions found in general purpose force fields struggle to faithfully represent the intermolecular quantum potential energy surface at close distances and in strong interaction regimes; that the more accurate neural network approximations do not capture crucial physics concepts, e.g., nonadditive inductive contributions and application of electric fields; and that the ultra-accurate narrowly targeted models have difficulty generalizing to the entire chemical space. We therefore designed a hybrid wide-coverage intermolecular interaction model consisting of an analytically polarizable force field combined with a short-range neural network correction for the total intermolecular interaction energy. Here, we describe the methodology and apply the model to accurately determine the properties of water, the free energy of solvation of neutral and charged molecules, and the binding free energy of ligands to proteins. The correction is subtyped for distinct chemical species to match the underlying force field, to segment and reduce the amount of quantum training data, and to increase accuracy and computational speed. For the systems considered, the hybrid ab initio parametrized Hamiltonian reproduces the two-body dimer quantum mechanics (QM) energies to within 0.03 kcal/mol and the nonadditive many-molecule contributions to within 2%. Simulations of molecular systems using this interaction model run at speeds of several nanoseconds per day.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...