Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38650065

RESUMO

The overall impact of a crude oil spill into a pristine freshwater environment in Canada is largely unknown. To evaluate the impact on the native microbial community, a large-scale in situ model experimental spill was conducted to assess the potential role of the natural community to attenuate hydrocarbons. A small volume of conventional heavy crude oil (CHV) was introduced within contained mesocosm enclosures deployed on the shoreline of a freshwater lake. The oil was left to interact with the shoreline for 72 h and then free-floating oil was recovered using common oil spill response methods (i.e. freshwater flushing and capture on oleophilic absorptive media). Residual polycyclic aromatic hydrocarbon (PAH) concentrations returned to near preoiling concentrations within 2 months, while the microbial community composition across the water, soil, and sediment matrices of the enclosed oligotrophic freshwater ecosystems did not shift significantly over this period. Metagenomic analysis revealed key polycyclic aromatic and alkane degradation mechanisms also did not change in their relative abundance over the monitoring period. These trends suggest that for small spills (<2 l of oil per 15 m2 of surface freshwater), physical oil recovery reduces polycyclic aromatic hydrocarbon concentrations to levels tolerated by the native microbial community. Additionally, the native microbial community present in the monitored pristine freshwater ecosystem possesses the appropriate hydrocarbon degradation mechanisms without prior challenge by hydrocarbon substrates. This study corroborated trends found previously (Kharey et al. 2024) toward freshwater hydrocarbon degradation in an environmentally relevant scale and conditions on the tolerance of residual hydrocarbons in situ.


Assuntos
Ecossistema , Lagos , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/metabolismo , Lagos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Canadá , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Microbiota/efeitos dos fármacos , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/classificação , Água Doce/microbiologia
2.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38650064

RESUMO

With the increase in crude oil transport throughout Canada, the potential for spills into freshwater ecosystems has increased and additional research is needed in these sensitive environments. Large enclosures erected in a lake were used as mesocosms for this controlled experimental dilbit (diluted bitumen) spill under ambient environmental conditions. The microbial response to dilbit, the efficacy of standard remediation protocols on different shoreline types commonly found in Canadian freshwater lakes, including a testing of a shoreline washing agent were all evaluated. We found that the native microbial community did not undergo any significant shifts in composition after exposure to dilbit or the ensuing remediation treatments. Regardless of the treatment, sample type (soil, sediment, or water), or type of associated shoreline, the community remained relatively consistent over a 3-month monitoring period. Following this, metagenomic analysis of polycyclic aromatic and alkane hydrocarbon degradation mechanisms also showed that while many key genes identified in PAH and alkane biodegradation were present, their abundance did not change significantly over the course of the experiment. These results showed that the native microbial community present in a pristine freshwater lake has the prerequisite mechanisms for hydrocarbon degradation in place, and combined with standard remediation practices in use in Canada, has the genetic potential and resilience to potentially undertake bioremediation.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos , Lagos , Poluição por Petróleo , Lagos/microbiologia , Canadá , Hidrocarbonetos/metabolismo , Microbiota , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sedimentos Geológicos/microbiologia , Água Doce/microbiologia , Metagenômica
3.
Can J Microbiol ; 70(5): 163-177, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350082

RESUMO

Global warming-induced sea ice loss in the Canadian Northwest Passage (NWP) will result in more shipping traffic, increasing the risk of oil spills. Microorganisms inhabiting NWP beach sediments may degrade hydrocarbons, offering a potential bioremediation strategy. In this study, the characterization and genomic analyses of 22 hydrocarbon-biodegradative bacterial isolates revealed that they contained a diverse range of key alkane and aromatic hydrocarbon-degradative genes, as well as cold and salt tolerance genes indicating they are highly adapted to the extreme Arctic environment. Some isolates successfully degraded Ultra Low Sulfur Fuel Oil (ULSFO) at temperatures as low as -5 °C and high salinities (3%-10%). Three isolates were grown in liquid medium containing ULSFO as sole carbon source over 3 months and variation of hydrocarbon concentration was measured at three time points to determine their rate of hydrocarbon biodegradation. Our results demonstrate that two isolates (Rhodococcus sp. R1B_2T and Pseudarthrobacter sp. R2D_1T) possess complete degradation pathways and can grow on alkane and aromatic components of ULSFO under Arctic conditions. Overall, these results demonstrate that diverse hydrocarbon-degrading microorganisms exist in the NWP beach sediments, offering a potential bioremediation strategy in the events of a marine fuel spill reaching the shores of the NWP.


Assuntos
Bactérias , Biodegradação Ambiental , Sedimentos Geológicos , Hidrocarbonetos , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Regiões Árticas , Canadá , Poluição por Petróleo , Filogenia , Água do Mar/microbiologia
4.
Mar Pollut Bull ; 199: 115919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134872

RESUMO

Marine oil spills have devastating environmental impacts and extrapolation of experimental fate and impact data from the lab to the field remains challenging due to the lack of comparable field data. In this work we compared two field systems used to study in situ oil depletion with emphasis on biodegradation and associated microbial communities. The systems were based on (i) oil impregnated clay beads and (ii) hydrophobic Fluortex adsorbents coated with thin oil films. The bacterial communities associated with the two systems displayed similar compositions of dominant bacterial taxa. Initial abundances of Oceanospirillales were observed in both systems with later emergences of Flavobacteriales, Alteromonadales and Rhodobacterales. Depletion of oil compounds was significantly faster in the Fluortex system and most likely related to the greater bioavailability of oil compounds as compared to the clay bead system.


Assuntos
Gammaproteobacteria , Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Argila , Água do Mar/química , Biodegradação Ambiental , Bactérias/metabolismo , Hidrocarbonetos/metabolismo
5.
Mar Pollut Bull ; 194(Pt B): 115358, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37567129

RESUMO

Effects of season and mixing on hydrocarbon concentrations and the microbial community response was explored in a series of mesocosm experiments simulating surface spills of diesel into coastal waters. Mixing of any amount contributed to hydrocarbons entering the water column, but diesel fuel composition had a significant effect on hydrocarbon concentrations. Higher initial concentrations of aromatic hydrocarbons resulted in higher water column concentrations, with minimal differences among seasons due to high variability. Regardless of the concentrations of hydrocarbons, prokaryotes increased and there were higher relative abundances of hydrocarbon affiliated bacteria with indications of biodegradation within 4 d of exposure. As concentrations decreased over time, the eukaryote community shifted from the initial community to one which appeared to be composed of organisms with some resilience to hydrocarbons. This series of experiments demonstrates the wide range of conditions under which natural attenuation of diesel fuel is an effective response.


Assuntos
Gasolina , Água , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo
6.
Mar Pollut Bull ; 194(Pt A): 115276, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37459772

RESUMO

The Baffin Island Oil Spill (BIOS) Project is a long-term monitoring field study conducted in the early 1980s, seeking to examine the physical and chemical fate of crude oil released into a pristine Arctic setting. During the present study, sites of the BIOS Project were revisited in 2019 for the collection of oiled intertidal and backshore sediments. These samples were analyzed for several groups of petroleum hydrocarbons including saturates (n-alkanes, branched alkanes, and alkylcycloalkanes), hopane and sterane biomarkers, and alkylbenzenes. These hydrocarbon groups were present in concentrations ranging from 1.77-1210, 0.224-51.7, 0.0643-16.9, 0.00-11.7, and 0.0171-8.60 mg/kg within individual samples, respectively. When comparing current to limited results from past BIOS studies, a representative branched alkane (phytane), and medium-chain (nC18) and long-chain (nC30) n-alkanes demonstrate extensive weathering processes, exhibiting up to 90 %, 98 %, and 77 % loss since the penultimate BIOS revisitation in 2001, respectively.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Hidrocarbonetos , Alcanos , Biomarcadores
7.
Mar Pollut Bull ; 194(Pt A): 115226, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442053

RESUMO

Global warming induced sea ice loss increases Arctic maritime traffic, enhancing the risk of ecosystem contamination from fuel spills and nutrient loading. The impact of marine diesel on bacterial metabolic activity and diversity, assessed by colorimetric assay, 16S rRNA and metagenomic sequencing, of Northwest Passage (Arctic Ocean) beach sediments was assessed with nutrient amendment at environmentally relevant temperatures (5 and 15 °C). Higher temperature and nutrients stimulated microbial activity, while diesel reduced it, with metabolism inhibited at and above 0.01 % (without nutrients) and at 1 % (with nutrients) diesel inclusions. Diesel exposure significantly decreased microbial diversity and selected for Psychrobacter genus. Microbial hydrocarbon degradation, organic compound metabolism, and exopolysaccharide production gene abundances increased under higher diesel concentrations. Metagenomic binning recovered nine MAGs/bins with hydrocarbon degradation genes. We demonstrate a nutrients' rescue-type effect in diesel contaminated microbial communities via enrichment of microorganisms with stress response, aromatic compound, and ammonia assimilation metabolisms.


Assuntos
Bactérias , Microbiota , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Regiões Árticas , Hidrocarbonetos/metabolismo
8.
Environ Res ; 233: 116421, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37327845

RESUMO

With an on-going disproportional warming of the Arctic Ocean and the reduction of the sea ice cover, the risk of an accidental oil spill from ships or future oil exploration is increasing. It is hence important to know how crude oil weathers in this environment and what factors affect oil biodegradation in the Arctic. However, this topic is currently poorly studied. In the 1980s, the Baffin Island Oil Spill (BIOS) project carried out a series of simulated oil spills in the backshore zone of beaches located on Baffin Island in the Canadian High Arctic. In this study two BIOS sites were re-visited, offering the unique opportunity to study the long-term weathering of crude oil under Arctic conditions. Here we show that residual oil remains present at these sites even after almost four decades since the original oiling. Oil at both BIOS sites appears to have attenuated very slowly with estimated loss rates of 1.8-2.7% per year. The presence of residual oil continues to significantly affect sediment microbial communities at the sites as manifested by a significantly decreased diversity, differences in the abundance of microorganisms and an enrichment of putative oil-degrading bacteria in oiled sediments. Reconstructed genomes of putative oil degraders suggest that only a subset is specifically adapted for growth under psychrothermic conditions, further reducing the time for biodegradation during the already short Arctic summers. Altogether, this study shows that crude oil spilled in the Arctic can persist and significantly affect the Arctic ecosystem for a long time, in the order of several decades.


Assuntos
Poluição por Petróleo , Petróleo , Petróleo/metabolismo , Ecossistema , Canadá , Regiões Árticas , Biodegradação Ambiental
9.
ISME Commun ; 3(1): 32, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076737

RESUMO

Crop breeding has traditionally ignored the plant-associated microbial communities. Considering the interactions between plant genotype and associated microbiota is of value since different genotypes of the same crop often harbor distinct microbial communities which can influence the plant phenotype. However, recent studies have reported contrasting results, which led us to hypothesize that the effect of genotype is constrained by growth stages, sampling year and plant compartment. To test this hypothesis, we sampled bulk soil, rhizosphere soil and roots of 10 field-grown wheat genotypes, twice per year, for 4 years. DNA was extracted and regions of the bacterial 16 S rRNA and CPN60 genes and the fungal ITS region were amplified and sequenced. The effect of genotype was highly contingent on the time of sampling and on the plant compartment sampled. Only for a few sampling dates, were the microbial communities significantly different across genotypes. The effect of genotype was most often significant for root microbial communities. The three marker genes used provided a highly coherent picture of the effect of genotype. Taken together, our results confirm that microbial communities in the plant environment strongly vary across compartments, growth stages, and years, and that this can mask the effect of genotype.

10.
Front Microbiol ; 14: 1073753, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846788

RESUMO

Lake Erie is subject to recurring events of cyanobacterial harmful algal blooms (cHABs), but measures of nutrients and total phytoplankton biomass seem to be poor predictors of cHABs when taken individually. A more integrated approach at the watershed scale may improve our understanding of the conditions that lead to bloom formation, such as assessing the physico-chemical and biological factors that influence the lake microbial community, as well as identifying the linkages between Lake Erie and the surrounding watershed. Within the scope of the Government of Canada's Genomics Research and Development Initiative (GRDI) Ecobiomics project, we used high-throughput sequencing of the 16S rRNA gene to characterize the spatio-temporal variability of the aquatic microbiome in the Thames River-Lake St. Clair-Detroit River-Lake Erie aquatic corridor. We found that the aquatic microbiome was structured along the flow path and influenced mainly by higher nutrient concentrations in the Thames River, and higher temperature and pH downstream in Lake St. Clair and Lake Erie. The same dominant bacterial phyla were detected along the water continuum, changing only in relative abundance. At finer taxonomical level, however, there was a clear shift in the cyanobacterial community, with Planktothrix dominating in the Thames River and Microcystis and Synechococcus in Lake St. Clair and Lake Erie. Mantel correlations highlighted the importance of geographic distance in shaping the microbial community structure. The fact that a high proportion of microbial sequences found in the Western Basin of Lake Erie were also identified in the Thames River, indicated a high degree of connectivity and dispersal within the system, where mass effect induced by passive transport play an important role in microbial community assembly. Nevertheless, some cyanobacterial amplicon sequence variants (ASVs) related to Microcystis, representing less than 0.1% of relative abundance in the upstream Thames River, became dominant in Lake St. Clair and Erie, suggesting selection of those ASVs based on the lake conditions. Their extremely low relative abundances in the Thames suggest additional sources are likely to contribute to the rapid development of summer and fall blooms in the Western Basin of Lake Erie. Collectively, these results, which can be applied to other watersheds, improve our understanding of the factors influencing aquatic microbial community assembly and provide new perspectives on how to better understand the occurrence of cHABs in Lake Erie and elsewhere.

11.
J Hazard Mater ; 446: 130656, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603421

RESUMO

Oil spill attenuation in Arctic marine environments depends on oil-degrading bacteria. However, the seasonally harsh conditions in the Arctic such as nutrient limitations and sub-zero temperatures limit the activity even for bacteria capable of hydrocarbon metabolism at low temperatures. Here, we investigated whether the variance between epipelagic (seasonal temperature and inorganic nutrient variations) and mesopelagic zone (stable environmental conditions) could limit the growth of oil-degrading bacteria and lead to lower oil biodegradation rates in the epipelagic than in the mesopelagic zone. Therefore, we deployed absorbents coated with three oil types in a SW-Greenland fjord system at 10-20 m (epipelagic) and 615-650 m (mesopelagic) water depth for one year. During this period we monitored the development and succession of the bacterial biofilms colonizing the oil films by 16S rRNA gene amplicon quantification and sequencing, and the progression of oil biodegradation by gas chromatography - mass spectrometry oil fingerprinting analysis. The removal of hydrocarbons was significantly different, with several polycyclic aromatic hydrocarbons showing longer half-life times in the epipelagic than in the mesopelagic zone. Bacterial community composition and density (16S rRNA genes/ cm2) significantly differed between the two zones, with total bacteria reaching to log-fold higher densities (16S rRNA genes/cm2) in the mesopelagic than epipelagic oil-coated absorbents. Consequently, the environmental conditions in the epipelagic zone limited oil biodegradation performance by limiting bacterial growth.


Assuntos
Poluição por Petróleo , Petróleo , Estuários , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Água do Mar/microbiologia , Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Petróleo/metabolismo
12.
Environ Res ; 222: 115329, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693458

RESUMO

The Arctic is a unique environment characterized by extreme conditions, including daylight patterns, sea ice cover, and some of the lowest temperatures on Earth. Such characteristics in tandem present challenges when extrapolating information from oil spill research within warmer, more temperate regions. Consequently, oil spill studies must be conducted within the Arctic to yield accurate and reliable results. Sites of the Baffin Island Oil Spill (BIOS) project (Cape Hatt, Baffin Island, Canadian Arctic) were revisited nearly 40 years after the original oil application to provide long-term monitoring data for Arctic oil spill research. Surface and subsurface sediment samples were collected from the intertidal zone of the 1981 nearshore oil spill experiment (Bay 11), from 1980 supratidal control plots (Crude Oil Point) and 1982 supratidal treatment plots (Bay 106). Samples were analyzed for Polycyclic Aromatic Hydrocarbons (PAHs) and alkylated homologues via Gas Chromatography - Mass Spectrometry (GC-MS). Our results suggest that total mean concentrations of all measured PAHs range from 0.049 to 14 mg/kg, whereas total mean concentrations of the 16 US EPA priority PAHs range from 0.02 to 2.1 mg/kg. The relative proportions of individual PAHs were compared between sampling sites and with the original technical mixture. Where available, percent loss of individual PAHs was compared with data from samples collected at the BIOS site, in 2001. All three sites featured samples where concentrations of various priority PAHs exceeded the established Interim Marine Sediment Quality Guidelines. All supratidal samples contained potentially toxic levels of PAHs. Even after nearly four decades of weathering, the recalcitrant crude oil residues remain a potential hazard for the native organisms. Continued monitoring of this unique study site is crucial for establishing a timeline for oil degradation, and to observe a reduction in toxicity over time.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Petróleo/análise , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Canadá , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Sedimentos Geológicos
13.
J Hazard Mater ; 445: 130439, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36437193

RESUMO

The biodegradability of residues derived from in-situ burning, an oil spill response strategy which involves burning an oil slick on the sea surface, has not yet been fully studied. With a growing risk of oil spills, the fate of the persistent burn residue containing potentially toxic substances must be better understood. Microcosms were used to study the microbial community response and potential biodegradability of in-situ burn residues generated from Ultra Low Sulphur (ULS) marine diesel. Microcosm studies were conducted using residues originating from the burning of unweathered and weathered diesel, with the addition of a fertilizer and a dispersant. Burn residues were incubated for 6 weeks at 7 °C in natural seawater with continual agitation in the dark. Samples were subsequently sacrificed for chemistry as well as 16S rRNA gene amplicon and shotgun metagenomic sequencing. Chemistry analyses revealed a reduction in hydrocarbon concentrations. Medium chain-length n-alkanes (nC16-nC24) decreased by 8% in unweathered burn residue microcosms and up to 26% in weathered burn residue microcosms. A significant decrease in polycyclic aromatic hydrocarbon (PAH) concentrations was observed only for naphthalene, fluorene and their alkylated homologs, in the microcosms amended with residue produced from burning weathered diesel. Decreases of 2-24%, were identified depending on the compound. Microcosms amended with burn residues had distinct microbial communities marked by an increase in relative abundance of putative hydrocarbon degraders as well as an increase of known hydrocarbon-degradation genes. These novel results suggest that if in-situ burning is performed on ULS marine diesel, some of the indigenous bacteria would respond to the newly available carbon source and some of the residual compounds would be biodegraded. Future studies involving longer incubation periods could give a better understanding of the fate of burn residues by shedding light on the potential biodegradability of the more recalcitrant residual compounds.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , RNA Ribossômico 16S/genética , Hidrocarbonetos/metabolismo , Água do Mar/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição por Petróleo/análise , Biodegradação Ambiental , Petróleo/metabolismo
14.
Sci Total Environ ; 859(Pt 1): 160161, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36379338

RESUMO

Despite many studies of diluted bitumen (DB) behavior during spills in saltwater, limited information is available on DB behavior in fresh water. This study examined the collective weathering processes on changes of fresh DB spilled in the North Saskatchewan River water and sediment mixture in a mesoscale spill tank under average air/water temperatures of 14 °C/15 °C and 6 °C/2 °C. Temporal changes of the hydrocarbon and microbial community compositions in the water column were assessed during the two 35-day tests under intermittent wave action. The contents of total organic carbon (TOC), benzene/toluene/ethylbenzene/xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs) in water decreased with time during both tests. The final contents remained at higher values in warm water (15 °C) than in cold water (2 °C) after the collective weathering processes. A quick response of the main phyla, Proteobacteria and Actinobacteria, was observed, where the members of Proteobacteria enriched during both DB spills. In contrast, the members of Actinobacteria reduced with time. The microbial shifts coincided with the changes of PAHs in the waters at both temperatures. A comparison of the physical properties and chemical compositions of fresh and weathered DBs at both temperatures showed that the oil had undergone weathering that increased oil density and viscosity due to losing the light oil fraction with boiling points < 204 °C and emulsifying with water. This corresponded to losses of 19.0 wt% and 17.2 wt% of the fresh DB at 15 °C and 2 °C tests, respectively. For organic compounds in the DB with boiling points > 204 °C, there were small losses of saturates and 2- & 3-ring PAH aromatics (more during the 15 °C test than the 2 °C test), and negligible losses in the subfractions of resins and asphaltenes by the ends of the tests. <1.0 wt% of the DB was recovered from the bottom sediment, regardless of the temperature.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Hidrocarbonetos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Água Doce , Bactérias , Água , Poluição por Petróleo/análise , Petróleo/análise
15.
Environ Res ; 216(Pt 1): 114456, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181891

RESUMO

In 1999, a tidal wetland located along the St. Lawrence River close to Ste. Croix de Lotbinière (Quebec, Eastern Canada) was the site of an experimental oil spill. Test plots were established and subjected to an experimental crude oil spill to evaluate natural attenuation, nutrient amendment and vegetation cropping as countermeasures. In 2020, this study re-visited the test plots to investigate residual oil and habitat recovery. Only concentrations of mid-chain length n-alkanes (C10-C36), but not of polycyclic aromatic hydrocarbons (PAHs), were significantly above detection limit, and were detected in both test plot and control sediments. Hydrocarbon, total organic carbon, nitrogen and phosphate contents did not differ significantly between test plot and control sediments. Microbial analyses did not detect significant differences in microbial load, microbial diversity or microbial community composition between test plot and control sediments. Key genes for the aerobic and anaerobic degradation of n-alkanes as well as for the aerobic degradation of PAHs were detected in all sediment samples. Associated gene abundances did not differ significantly between test plot and control sediments. This study shows that oil-exposed test plot sediments of the Ste. Croix wetland can be considered completely recovered after 21 years irrespective of the performed countermeasure.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Rios , Áreas Alagadas , Petróleo/análise , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Alcanos/análise , Monitoramento Ambiental
16.
Brief Bioinform ; 23(6)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36352504

RESUMO

In shotgun metagenomics (SM), the state-of-the-art bioinformatic workflows are referred to as high-resolution shotgun metagenomics (HRSM) and require intensive computing and disk storage resources. While the increase in data output of the latest iteration of high-throughput DNA sequencing systems can allow for unprecedented sequencing depth at a minimal cost, adjustments in HRSM workflows will be needed to properly process these ever-increasing sequence datasets. One potential adaptation is to generate so-called shallow SM datasets that contain fewer sequencing data per sample as compared with the more classic high coverage sequencing. While shallow sequencing is a promising avenue for SM data analysis, detailed benchmarks using real-data are lacking. In this case study, we took four public SM datasets, one massive and the others moderate in size and subsampled each dataset at various levels to mimic shallow sequencing datasets of various sequencing depths. Our results suggest that shallow SM sequencing is a viable avenue to obtain sound results regarding microbial community structures and that high-depth sequencing does not bring additional elements for ecological interpretation. More specifically, results obtained by subsampling as little as 0.5 M sequencing clusters per sample were similar to the results obtained with the largest subsampled dataset for human gut and agricultural soil datasets. For an Antarctic dataset, which contained only a few samples, 4 M sequencing clusters per sample was found to generate comparable results to the full dataset. One area where ultra-deep sequencing and maximizing the usage of all data was undeniably beneficial was in the generation of metagenome-assembled genomes.


Assuntos
Metagenômica , Microbiota , Humanos , Análise de Sequência de DNA/métodos , Metagenômica/métodos , Metagenoma , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética
17.
Environ Pollut ; 313: 120177, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116568

RESUMO

Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.


Assuntos
Alcanivoraceae , Alcanivoraceae/genética , Alcanivoraceae/metabolismo , Alcanos/metabolismo , Oceano Atlântico , Biodegradação Ambiental , Carbono/metabolismo , Citocromo P-450 CYP4A , Ecossistema , Hidrocarbonetos/análise , Plásticos/metabolismo
18.
Environ Sci Technol ; 56(12): 8187-8196, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35658111

RESUMO

Tidal zones providing habitats are particularly vulnerable to microplastic (MP) pollution. In this study, the effects of tidal cycles on the transport of MPs (4-6 µm polyethylene, PE1; 125 µm polyethylene, PE2; and 5-6 µm polytetrafluoroethylene, PFTE) in porous media combined with various environmental and MPs properties were systemically investigated. The results indicated that smaller substrate sizes exhibited higher retention percentages compared to those of larger substrate sizes under different tidal cycles. In terms of the size of MPs, a larger size (same density) was found to result in enhanced retention of MPs in the column. As the number of tidal cycles increased, although the transport of MPs from the substrate to the water phase was enhanced, PE1 was washed out more with the change in water level, compared to PTFE. Additionally, more MPs were retained in the column with the increase of salinity and the decrease of flow velocity under the same tidal cycles. Ultraviolet and seawater aged PE1 showed enhanced transport, while aged PTFE showed enhanced retention under the same tidal cycles. These results can help understand the MP behaviors in the shoreline environment and provide support for future cleanup and sampling in tidal zones.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos/química , Polietileno , Polímeros , Politetrafluoretileno , Água , Poluentes Químicos da Água/análise
19.
J Hazard Mater ; 436: 129260, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739779

RESUMO

Growing concerns over the risk of accidental releases of oil into the marine environment have emphasized our need to improve both oil spill preparedness and response strategies. Among the available spill response options, dispersants offer the advantages of breaking oil slicks into small oil droplets and promoting their dilution, dissolution, and biodegradation within the water column. Thus dispersants can reduce the probability of oil slicks at sea from reaching coastal regions and reduce their direct impact on mammals, sea birds and shoreline ecosystems. To facilitate marine oil spill response operations, especially addressing spill incidents in remote/Arctic offshore regions, an in-depth understanding of the transportation, fate and effects of naturally/chemically dispersed oil is of great importance. This review provides a synthesis of recent research results studies related to the application of dispersants at the surface and in the deep sea, the fate and transportation of naturally and chemically dispersed oil, and dispersant application in the Arctic and ice-covered waters. Future perspectives have been provided to identify the research gaps and help industries and spill response organizations develop science-based guidelines and protocols for the application of dispersants application.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Biodegradação Ambiental , Ecossistema , Mamíferos/metabolismo , Petróleo/metabolismo , Poluição por Petróleo/análise , Poluição por Petróleo/prevenção & controle , Água , Poluentes Químicos da Água/análise
20.
Microbiol Resour Announc ; 11(7): e0005922, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35758689

RESUMO

Draft whole-genome sequences of a coculture are presented. One component was a polar cyanobacterium, Leptolyngbya sp. strain Cla-17. The second was a heterotrophic bacterium, Flavobacterium saccharophilum, found in the phycosphere of the cyanobacterium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...