Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Nucl Med Mol Imaging ; 13(3): 95-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457324

RESUMO

The PI3K/Akt/mTOR pathway is frequently dysregulated in cancer due to its central role in cell growth, survival, and proliferation. Overactivation of the PI3K/Akt/mTOR pathway may occur through varying mechanisms including mutations, gene amplification, and upstream signaling events, ultimately resulting in cancer. Therefore, PI3K/Akt/mTOR pathway has emerged as an attractive target for cancer therapy and imaging. A promising approach to inhibit this pathway involves a simultaneous inhibition of both PI3K and mTOR using a dual inhibitor. Recently, a potent dual PI3K/mTOR inhibitor, 2,4-difluoro-N-(2-methoxy-5-(3-(5-(2-(4-methylpiperazin-1-yl)ethyl)-1,3,4-oxadiazol-2-yl)imidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)benzenesulfonamide (7), was discovered and demonstrated excellent kinase selectivity IC50 (PI3K/mTOR) = 0.20/21 nM; good cellular growth inhibition IC50 (HCT-116 cell) = 10 nM, modest plasma clearance, and acceptable oral bioavailability. Expanding on this discovery, here we present the synthesis of the carbon-11 labeled imidazo[1,2-a]pyridine derivative 2,4-difluoro-N-(2-methoxy-5-(3-(5-(2-(4-[11C]methylpiperazin-1-yl)ethyl)-1,3,4-oxadiazol-2-yl)imidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)benzenesulfonamide (N-[11C]7) as a new potential radiotracer for the biomedical imaging technique positron emission tomography (PET) imaging of PI3K/mTOR in cancer. The reference standard 7 and its N-demethylated precursor, 2,4-difluoro-N-(2-methoxy-5-(3-(5-(2-(piperazin-1-yl)ethyl)-1,3,4-oxadiazol-2-yl)imidazo[1,2-a]pyridin-6-yl)pyridin-3-yl)benzenesulfonamide (11), were synthesized in 7 and 8 steps with 10% and 7% overall chemical yield, respectively. N-[11C]7 was prepared from 11 using [11C]methyl triflate ([11C]CH3OTf) through N-11C-methylation and isolated by high-performance liquid chromatography (HPLC) and solid-phase extraction (SPE) formulation in 40-50% radiochemical yield decay corrected to end of bombardment (EOB) based on [11C]CO2. The radiochemical purity was > 99% and the molar activity (Am) at EOB was in the range of 296-555 GBq/µmol (n = 5).

2.
Am J Nucl Med Mol Imaging ; 12(4): 113-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072763

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality. Early detection of HCC is important since potentially curative therapies exist in the initial stages of HCC; no curative therapies exist for late-stage HCC. However, the initial detection of HCC remains challenging due to the lack of symptoms during the early stage of the disease. Other methods of screening and detecting HCC, including blood serum tests and conventional imaging methods, remain inadequate due to genetic differences between patients and the high background activity of liver tissues. Thus, there is a need for an accurate imaging agent for the diagnosis, staging, and prognosis of HCC. Glypican-3 (GPC3) is an oncofetal receptor responsible for regulating cell division, growth, and survival. GPC3 is a clinically relevant biomarker for imaging and therapeutics, as its expression is HCC tumor-specific and absent from normal and other pathological liver tissues. The development of novel GPC3-targeting imaging agents has encompassed three classes of biomolecules: peptides, antibodies, and aptamers. These biomolecules serve as constructs for diagnostic imaging (demonstrating potential as positron emission tomography [PET], single-photon emission tomography [SPECT], and optical imaging agents) and HCC treatment delivery. More than 20 unique ligands have been identified in the literature as showing specificity for the GPC3 receptor. Although several ligands are currently under clinical investigation as therapies for HCC, clinical translation of GPC3-targeting ligands as imaging agents is lacking. This review highlights the current landscape of ligands targeting GPC3 and describes their promising possibilities as imaging agents for HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...