Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 70(2): 641-651, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30346611

RESUMO

The identification of homologous genes with functional overlap in forward genetic screens is severely limited. Here, we report the generation of over 14000 artificial microRNA (amiRNA)-expressing plants that enable screens of the functionally redundant gene space in Arabidopsis. A protocol was developed for isolating robust and reproducible amiRNA mutants. Examples of validation approaches and essential controls are presented for two new amiRNA mutants that exhibit genetically redundant phenotypes and circumvent double mutant lethality. In a forward genetic screen for abscisic acid (ABA)-mediated inhibition of seed germination, amiRNAs that target combinations of known redundant ABA receptor and SnRK2 kinase genes were rapidly isolated, providing a strong proof of principle for this approach. A new ABA-insensitive amiRNA line that targets three avirulence-induced gene 2(-like) genes was isolated . A thermal imaging screen for plants with impaired stomatal opening in response to low CO2 exposure led to the isolation of a new amiRNA targeting two essential proteasomal subunits, PAB1 and PAB2. The seed library of 11000 T2 amiRNA lines (with 3000 lines in progress) generated here provides a new platform for forward genetic screens and has been made available to the Arabidopsis Biological Resource Center (ABRC). Optimized procedures for amiRNA screening and controls are described.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/genética , Dióxido de Carbono/metabolismo , MicroRNAs , Sementes , Arabidopsis/metabolismo , Biblioteca Gênica , Germinação , Fenótipo
2.
J Cell Biol ; 217(2): 495-505, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29317528

RESUMO

Proper inheritance of functional organelles is vital to cell survival. In the budding yeast, Saccharomyces cerevisiae, the endoplasmic reticulum (ER) stress surveillance (ERSU) pathway ensures that daughter cells inherit a functional ER. Here, we show that the ERSU pathway is activated by phytosphingosine (PHS), an early biosynthetic sphingolipid. Multiple lines of evidence support this: (1) Reducing PHS levels with myriocin diminishes the ability of cells to induce ERSU phenotypes. (2) Aureobasidin A treatment, which blocks conversion of early intermediates to downstream complex sphingolipids, induces ERSU. (3) orm1Δorm2Δ cells, which up-regulate PHS, show an ERSU response even in the absence of ER stress. (4) Lipid analyses confirm that PHS levels are indeed elevated in ER-stressed cells. (5) Lastly, the addition of exogenous PHS is sufficient to induce all ERSU phenotypes. We propose that ER stress elevates PHS, which in turn activates the ERSU pathway to ensure future daughter-cell viability.


Assuntos
Estresse do Retículo Endoplasmático , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Esfingolipídeos/antagonistas & inibidores , Esfingolipídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...