Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
NPJ Sci Food ; 7(1): 55, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838796

RESUMO

Functional diversity within isogenic spatially organised bacterial populations has been shown to trigger emergent community properties such as stress tolerance. Considering gadB gene encoding a key glutamate decarboxylase involved in E. coli tolerance to acidic conditions, we investigated its expression in hydrogels mimicking the texture of some structured food matrices (such as minced meat or soft cheese). Taking advantage of confocal laser scanning microscopy combined with a genetically-engineered dual fluorescent reporter system, it was possible to visualise the spatial patterns of bacterial gene expression from in-gel microcolonies. In E. coli O157:H7 microcolonies, gadB showed radically different expression patterns between neutral (pH 7) or acidic (pH 5) hydrogels. Differential spatial expression was determined in acidic hydrogels with a strong expression of gadB at the microcolony periphery. Strikingly, very similar spatial patterns of gadB expression were further observed for E. coli O157:H7 grown in the presence of L. lactis. Considering the ingestion of contaminated foodstuff, survival of E. coli O157:H7 to acidic stomachal stress (pH 2) was significantly increased for bacterial cells grown in microcolonies in acidic hydrogels compared to planktonic cells. These findings have significant implications for risk assessment and public health as they highlight inherent differences in bacterial physiology and virulence between liquid and structured food products. The contrasting characteristics observed underscore the need to consider the distinct challenges posed by these food types, thereby emphasising the importance of tailored risk mitigation strategies.

2.
Food Microbiol ; 103: 103965, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35082082

RESUMO

The spatial organisation of bacterial pathogens in food matrices remains poorly understood, but is important in improving risk assessment and preventing infection of consumers by contaminated foodstuff. By combining confocal laser scanning microscopy with genetic fluorescent labelling of Listeria monocytogenes and Escherichia coli O157:H7, it was possible to investigate the spatial patterns of colonisation of both foodborne pathogens in gel matrices, alone or in combination, in various environmental conditions. Increasing low melting point agarose (LMPA) concentrations triggers the transition between a motile single-cell lifestyle to a sessile population spatially organised as microcolonies. The size, number and morphology of microcolonies were highly affected by supplementations in NaCl or lactic acid, two compounds frequently used in food products. Strikingly, single-cell motility was partially restored at higher LMPA concentration in the presence of lactic acid for Escherichia coli O157:H7 and in the presence of NaCl for Listeria monocytogenes. Co-culture of both species in the hydrogel affected pathogen colonisation features; Listeria monocytogenes was better able to colonise gel matrices containing lactic acid in the presence of Escherichia coli O157:H7. Altogether, this investigation provides insights into the spatial distribution and structural dynamics of bacterial pathogens in gel matrices. Potential impacts on food safety are discussed.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Contagem de Colônia Microbiana , Escherichia coli O157/genética , Microbiologia de Alimentos , Listeria monocytogenes/genética
3.
Methods Mol Biol ; 2220: 123-136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32975771

RESUMO

The behavior of Listeria monocytogenes communities in the food chain is closely associated with their spatial organization. Whether as biofilms on industrial surfaces or as microcolonies in food matrices, the resulting physiological diversification combined with the presence of extracellular polymeric substances (EPS) triggers emergent community functions involved in the pathogen survival and persistence (e.g., tolerance to dehydration, biocides, or preservatives). In this contribution, we present a noninvasive confocal laser microscopy (CLM) protocol allowing exploration of the spatial organization of L. monocytogenes communities on various inert or nutritive materials relevant for the food industry.


Assuntos
Biofilmes , Listeria monocytogenes/fisiologia , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/ultraestrutura , Listeriose/microbiologia , Microscopia Confocal/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...