Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Vascul Pharmacol ; : 107412, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39033868

RESUMO

AIMS: To identify the cardiac biogenic amine profile of obese rats and associate these compounds with parameters of cardiovascular disease. MAIN METHODS: Wistar rats (n = 20) were randomly distributed into two groups: control and obese. Obesity was induced by a high-sugar fat diet. Biochemical parameters were evaluated. Doppler Echocardiography and systolic blood pressure; interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), protein carbonylation, ferric reducing antioxidant power (FRAP), and catalase activity were measured in cardiac tissue. HPLC evaluated the cardiac biogenic profile. Data were compared using the Student's T or Mann-Whitney tests and Spearman's correlation at 5% significance. The principal component analysis (PCA) was performed. KEY FINDINGS: Obesity generated hypertension, cardiac remodeling and dysfunction, and imbalanced all biochemical, inflammatory, and oxidative markers (p < 0.001). Eight biogenic amines were found in cardiac tissue. Obesity increased serotonin and decreased agmatine, putrescine, cadaverine, and spermidine. Serotonin (r = 0.534 to 0.808) was strong and positively correlated with obesity, biochemical parameters, cardiac inflammation, oxidative stress, hypertension, cardiac remodeling, and dysfunction (p < 0.001). Spermidine (r = -0.560 to -0.680), putrescine (r = -0.532 to -0.805), cadaverine (r = -0.534 to -0.860), and agmatine (r = -0.579 to -0.884) were inversely correlated with the same parameters (p < 0.001). PCA allowed for distinguishing the control and obese groups. SIGNIFICANCE: There are strong correlations between cardiac biogenic amine levels, cardiac remodeling, and dysfunction resulting from obesity. CONCLUSION: There is an association between cardiac biogenic amines and cardiovascular disease in obesity. In addition, agmatine, putrescine, cadaverine, and, mainly, serotonin may be new biomarkers for cardiovascular health in obesity and help to improve the diagnosis and treatment of CVD resulting or not from obesity. However, more research is needed to support this conclusion.

2.
Mol Cell Endocrinol ; 589: 112236, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608803

RESUMO

INTRODUCTION: High sucrose intake is linked to cardiovascular disease, a major global cause of mortality worldwide. Calcium mishandling and inflammation play crucial roles in cardiac disease pathophysiology. OBJECTIVE: Evaluate if sucrose-induced obesity is related to deterioration of myocardial function due to alterations in the calcium-handling proteins in association with proinflammatory cytokines. METHODS: Wistar rats were divided into control and sucrose groups. Over eight weeks, Sucrose group received 30% sucrose water. Cardiac function was determined in vivo using echocardiography and in vitro using papillary muscle assay. Western blotting was used to detect calcium handling protein; ELISA assay was used to assess TNF-α and IL-6 levels. RESULTS: Sucrose led to cardiac dysfunction. RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channels were unchanged. However, pPBL-Thr17, and TNF-α levels were elevated in the S group. CONCLUSION: Sucrose induced cardiac dysfunction and decreased myocardial contractility in association with altered pPBL-Thr17 and elevated cardiac pro-inflammatory TNF-α.


Assuntos
Proteínas de Ligação ao Cálcio , Ratos Wistar , Fator de Necrose Tumoral alfa , Animais , Masculino , Ratos , Proteínas de Ligação ao Cálcio/metabolismo , Interleucina-6/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Sacarose/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Mol Cell Endocrinol ; 582: 112138, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147954

RESUMO

Consumption of diets high in sugar and fat is related to the development of Metabolic dysfunction-associated steatotic liver disease (MASLD). Carnosine (CAR) is a dipeptide with antioxidant and anti-inflammatory action and has been studied for treating diseases. This work aimed to evaluate the effects of CAR on diet-induced MASLD in rats. Male Wistar rats were distributed into 2 groups (17 weeks): normocaloric (Co, n = 12), and hypercaloric diet rich in lipids and simple carbohydrates (MASLD, n = 12). After, the animals were redistributed to begin the treatment with CAR (4 weeks): Co (n = 6), Co + CAR (n = 6), MASLD (n = 6), and MASLD + CAR (n = 6), administered intraperitoneally (250 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; hepatic steatosis, inflammatory and oxidative markers. MASLD group had a higher adiposity index, systolic blood pressure, glucose, plasma and liver triglycerides and cholesterol, insulin, hepatic steatosis, oxidative markers, and lower PPAR-α (Peroxisome Proliferator-activated receptor α), compared to the Co. CAR attenuated plasma and hepatic triglyceride and cholesterol levels, hepatic steatosis, CD68+ macrophages, and hepatic oxidative markers, in addition to increasing HDL cholesterol levels and PPAR-α, compared to the untreated MASLD group. CAR acts in importants pathophysiological processes of MASLD and may be a therapeutic compound to control the disease.


Assuntos
Carnosina , Fígado Gorduroso , Doenças Metabólicas , Masculino , Animais , Ratos , Ratos Wistar , Carnosina/farmacologia , Carnosina/uso terapêutico , Receptores Ativados por Proliferador de Peroxissomo , Dieta , Colesterol , Suplementos Nutricionais
4.
J Cell Mol Med ; 27(19): 2956-2969, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654004

RESUMO

We employed an early training exercise program, immediately after recovery from surgery, and before severe cardiac hypertrophy, to study the underlying mechanism involved with the amelioration of cardiac dysfunction in aortic stenosis (AS) rats. As ET induces angiogenesis and oxygen support, we aimed to verify the effect of exercise on myocardial lipid metabolism disturbance. Wistar rats were divided into Sham, trained Sham (ShamT), AS and trained AS (AST). The exercise consisted of 5-week sessions of treadmill running for 16 weeks. Statistical analysis was conducted by anova or Kruskal-Wallis test and Goodman test. A global correlation between variables was also performed using a two-tailed Pearson's correlation test. AST rats displayed a higher functional capacity and a lower cardiac remodelling and dysfunction when compared to AS, as well as the myocardial capillary rarefaction was prevented. Regarding metabolic properties, immunoblotting and enzymatic assay raised beneficial effects of exercise on fatty acid transport and oxidation pathways. The correlation assessment indicated a positive correlation between variables of angiogenesis and FA utilisation, as well as between metabolism and echocardiographic parameters. In conclusion, early exercise improves exercise tolerance and attenuates cardiac structural and functional remodelling. In parallel, exercise attenuated myocardial capillary and lipid metabolism derangement in rats with aortic stenosis-induced heart failure.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Condicionamento Físico Animal , Ratos , Animais , Ratos Wistar , Metabolismo dos Lipídeos , Insuficiência Cardíaca/metabolismo
7.
Eur J Nutr ; 61(2): 901-913, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34636986

RESUMO

PURPOSE: This study aimed to evaluate the effect of rice bran (RB) supplementation to a high-sugar fat (HSF) diet on cardiac dysfunction in an experimental obesity model. METHODS: Male Wistar rats were distributed into three groups: control, high-sugar fat, and high-sugar fat supplemented with 11% RB for 20 weeks. RESULTS: HSF diet promoted obesity and metabolic complications. Obese rats showed cardiac structural and functional impairment associated with high levels of interleukin-6, tumoral necrosis factor alpha, and malondialdehyde, and decreased activity of superoxide dismutase and catalase in the myocardium. RB supplementation was able to mitigate obesity and its metabolic alterations in HSF diet-fed animals. Moreover, the RB also prevented structural and functional damage, inflammation, and redox imbalance in the heart of these animals. CONCLUSION: This study suggests that RB supplementation prevents cardiac dysfunction in rats fed on HSF by modulating systemic metabolic complications and inflammation and oxidative stress in the myocardium, representing potential alternative therapy.


Assuntos
Oryza , Animais , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Miocárdio/metabolismo , Obesidade/metabolismo , Oryza/química , Oxirredução , Estresse Oxidativo , Ratos , Ratos Wistar
8.
Mol Cell Endocrinol ; 537: 111423, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400258

RESUMO

BACKGROUND: Skeletal muscle is the most important organ for whole-body glucose homeostasis. However, it has been suggested that obesity-related inflammation could be involved in insulin resistance and diabetes mellitus type 2 (DM2) development due several mechanisms, among them, the reduced expression of the glucose transporter type 4 (GLUT-4). Gamma-oryzanol (γOz) is a compound present in the whole grain of rice that presents anti-inflammatory and antioxidant activities. The aim of this study was to verify if the effect antioxidant and anti-inflammatory of yOz attenuate insulin resistance in skeletal muscle of obese rats by increasing GLUT- 4 expression. METHODS: Male Wistar rats (±187 g) were initially randomly distributed into 2 experimental groups (control, n = 6, and high sugar-fat diet (HSF), n = 12) for 20 weeks. At week 20th of this study, once obesity and insulin resistance were detected in the HSF group, animals were divided to begin the treatment with γOz or continue receiving HSF for 10 more weeks. At the end it was analyzed nutritional, metabolic, inflammatory and oxidative stress parameters and GLUT-4 protein expression. RESULTS: The treatment improved insulin resistance, reduced inflammation, increased antioxidant response and GLUT-4 expression. CONCLUSION: It is possible to conclude that the antioxidant and anti-inflammatory activity of yOz attenuates insulin resistance by increasing GLUT-4 expression in skeletal muscle of obese animals.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Músculo Esquelético/patologia , Obesidade/patologia , Fenilpropionatos/farmacologia , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Glicemia/metabolismo , Jejum/sangue , Teste de Tolerância a Glucose , Inflamação/patologia , Insulina/sangue , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Obesidade/sangue , Obesidade/fisiopatologia , Carbonilação Proteica/efeitos dos fármacos , Ratos Wistar
9.
Arq Bras Cardiol ; 117(1): 91-99, 2021 07.
Artigo em Inglês, Português | MEDLINE | ID: mdl-34320076

RESUMO

BACKGROUND: Obesity is a chronic low-grade inflammation condition related to cardiac disorders. However, the mechanism responsible for obesity-related cardiac inflammation is unclear. The toll-like receptor 4 (TLR-4) belongs to a receptor of the transmembrane family responsible for the immune response whose activation stimulates the production of proinflammatory cytokines. OBJECTIVE: To test whether the activation of the TLR-4 receptor participates in the obesity cardiomyopathy process, due to cytokine production through NF-ĸB activation. METHODS: Male Wistar rats were randomized into two groups: the control group (C, n= 8 animals) that received standard diet/water and the obese group (OB, n= 8 animals) that were fed a high sugar-fat diet and water plus 25% of sucrose for 30 weeks. Nutritional analysis: body weight, adiposity index, food, water, and caloric intake. Obesity-related disorders analysis: plasma glucose, uric acid and triglycerides, HOMA-IR, systolic blood pressure, TNF-α in adipose tissue. Cardiac analysis included: TLR-4 and NF-ĸB protein expression, TNF-α and IL-6 levels. Comparison by unpaired Student's t-test or Mann- Whitney test with a p-value < 0.05 as statistically significant. RESULTS: The OB group showed obesity, high glucose, triglycerides, uric acid, HOMA, systolic blood pressure, and TNF-α in adipose tissue. OB group presented cardiac remodeling and diastolic dysfunction. TLR-4 and NF-ĸB expression and cytokine levels were higher in OB. CONCLUSION: Our findings conclude that, in an obesogenic condition, the inflammation derived from cardiac TLR-4 activation can be a mechanism able to lead to remodeling and cardiac dysfunction.


FUNDAMENTO: A obesidade é uma condição inflamatória crônica de baixo grau relacionada a distúrbios cardíacos. No entanto, o mecanismo responsável pela inflamação cardíaca relacionada à obesidade não é claro. O receptor do tipo toll 4 (TLR-4) pertence a um receptor da família das transmembranas, responsável pela resposta imune, cuja ativação estimula a produção de citocinas pró-inflamatórias. OBJETIVO: Testar se a ativação do receptor TLR-4 participa do processo de cardiomiopatia da obesidade, devido à produção de citocinas por meio da ativação do NF-ĸB. MÉTODOS: Ratos Wistar machos foram randomizados em dois grupos: o grupo controle (C, n = 8 animais) que recebeu dieta padrão/água e o grupo obeso (OB, n = 8 animais) que foi alimentado com dieta rica em açúcar e gordura e água mais 25% de sacarose por 30 semanas. Análise nutricional: peso corporal, índice de adiposidade, alimentos, água e ingestão calórica. Análise de distúrbios relacionados à obesidade: glicose plasmática, ácido úrico e triglicerídeos, HOMA-IR, pressão arterial sistólica, TNF-α no tecido adiposo. A análise cardíaca incluiu: expressão das proteínas TLR-4 e NF-ĸB, níveis de TNF-α e IL-6. Comparação pelo teste t de Student não pareado ou teste de Mann-Whitney com um valor de p <0,05 como estatisticamente significativo. RESULTADOS: O grupo OB apresentou obesidade, glicose elevada, triglicerídeos, ácido úrico, HOMA, pressão arterial sistólica e TNF-α no tecido adiposo. O grupo OB apresentou remodelação cardíaca e disfunção diastólica. A expressão de TLR-4 e NF-ĸB e os níveis de citocinas foram maiores em OB. CONCLUSÃO: Nossos achados concluem que, em uma condição obesogênica, a inflamação derivada da ativação do TLR-4 cardíaco pode ser um mecanismo capaz de levar à remodelação e disfunção cardíaca.


Assuntos
Cardiomiopatias , Receptor 4 Toll-Like , Animais , Imunidade Inata , Inflamação , Masculino , Obesidade , Ratos , Ratos Wistar
10.
Arq. bras. cardiol ; 117(1): 91-99, July. 2021. tab, graf
Artigo em Português | LILACS | ID: biblio-1285230

RESUMO

Resumo Fundamento A obesidade é uma condição inflamatória crônica de baixo grau relacionada a distúrbios cardíacos. No entanto, o mecanismo responsável pela inflamação cardíaca relacionada à obesidade não é claro. O receptor do tipo toll 4 (TLR-4) pertence a um receptor da família das transmembranas, responsável pela resposta imune, cuja ativação estimula a produção de citocinas pró-inflamatórias. Objetivo Testar se a ativação do receptor TLR-4 participa do processo de cardiomiopatia da obesidade, devido à produção de citocinas por meio da ativação do NF-ĸB. Métodos Ratos Wistar machos foram randomizados em dois grupos: o grupo controle (C, n = 8 animais) que recebeu dieta padrão/água e o grupo obeso (OB, n = 8 animais) que foi alimentado com dieta rica em açúcar e gordura e água mais 25% de sacarose por 30 semanas. Análise nutricional: peso corporal, índice de adiposidade, alimentos, água e ingestão calórica. Análise de distúrbios relacionados à obesidade: glicose plasmática, ácido úrico e triglicerídeos, HOMA-IR, pressão arterial sistólica, TNF-α no tecido adiposo. A análise cardíaca incluiu: expressão das proteínas TLR-4 e NF-ĸB, níveis de TNF-α e IL-6. Comparação pelo teste t de Student não pareado ou teste de Mann-Whitney com um valor de p <0,05 como estatisticamente significativo. Resultados O grupo OB apresentou obesidade, glicose elevada, triglicerídeos, ácido úrico, HOMA, pressão arterial sistólica e TNF-α no tecido adiposo. O grupo OB apresentou remodelação cardíaca e disfunção diastólica. A expressão de TLR-4 e NF-ĸB e os níveis de citocinas foram maiores em OB. Conclusão Nossos achados concluem que, em uma condição obesogênica, a inflamação derivada da ativação do TLR-4 cardíaco pode ser um mecanismo capaz de levar à remodelação e disfunção cardíaca.


Abstract Background Obesity is a chronic low-grade inflammation condition related to cardiac disorders. However, the mechanism responsible for obesity-related cardiac inflammation is unclear. The toll-like receptor 4 (TLR-4) belongs to a receptor of the transmembrane family responsible for the immune response whose activation stimulates the production of proinflammatory cytokines. Objective To test whether the activation of the TLR-4 receptor participates in the obesity cardiomyopathy process, due to cytokine production through NF-ĸB activation. Methods Male Wistar rats were randomized into two groups: the control group (C, n= 8 animals) that received standard diet/water and the obese group (OB, n= 8 animals) that were fed a high sugar-fat diet and water plus 25% of sucrose for 30 weeks. Nutritional analysis: body weight, adiposity index, food, water, and caloric intake. Obesity-related disorders analysis: plasma glucose, uric acid and triglycerides, HOMA-IR, systolic blood pressure, TNF-α in adipose tissue. Cardiac analysis included: TLR-4 and NF-ĸB protein expression, TNF-α and IL-6 levels. Comparison by unpaired Student's t-test or Mann- Whitney test with a p-value < 0.05 as statistically significant. Results The OB group showed obesity, high glucose, triglycerides, uric acid, HOMA, systolic blood pressure, and TNF-α in adipose tissue. OB group presented cardiac remodeling and diastolic dysfunction. TLR-4 and NF-ĸB expression and cytokine levels were higher in OB. Conclusion Our findings conclude that, in an obesogenic condition, the inflammation derived from cardiac TLR-4 activation can be a mechanism able to lead to remodeling and cardiac dysfunction.


Assuntos
Animais , Masculino , Ratos , Receptor 4 Toll-Like , Cardiomiopatias , Ratos Wistar , Imunidade Inata , Inflamação , Obesidade
11.
Arch Med Res ; 52(3): 284-293, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33220932

RESUMO

BACKGROUND: Decreased cardiac contractility has been observed in cirrhosis, but the mechanisms that initiate and maintain cardiac dysfunction are not entirely understood. AIM OF THE STUDY: We test the hypothesis that cirrhotic cardiomyopathy is related to deterioration of myocardial contractility due to alterations in calcium-handling proteins expression. In addition, we evaluated whether cardiac pro-inflammatory cytokine levels are associated with this process. METHODS: Cirrhosis was induced by thioacetamide (TAA, 100 mg/kg/i.p., twice weekly for eight weeks). The myocardial performance was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic challenge. The cardiac calcium handling protein expression was detected by Western blotting. Cardiac TNF-α and IL-6 levels were measured by ELISA. RESULTS: Thioacetamide induced liver cirrhosis, which was associated with cirrhotic cardiomyopathy characterized by in vivo left ventricular diastolic and systolic dysfunction as well as cardiac hypertrophy. In vitro baseline myocardial contractility was lower in cirrhosis. Also, myocardial responsiveness to post-rest contraction stimulus was declined. Protein expression for RYR2, SERCA2, NCX, pPBL Ser16 and L-type calcium channel was quantitatively unchanged; however, pPBL Thr17 was significantly lower while IL-6 was higher. CONCLUSIONS: Our study demonstrates that cirrhotic cardiomyopathy is associated with decreased cardiac contractility with alteration of phospholamban phosphorylation in association with higher cardiac pro-inflammatory IL-6 levels. These findings provided molecular and functional insights about the effects of liver cirrhosis on cardiac function.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Interleucina-6/metabolismo , Cirrose Hepática/metabolismo , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Cirrose Hepática/fisiopatologia , Masculino , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Wistar , Tioacetamida/administração & dosagem
12.
J Cardiovasc Transl Res ; 14(4): 674-684, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32246321

RESUMO

Cirrhotic cardiomyopathy is a condition where liver cirrhosis is associated with cardiac dysfunction. Triggers and blockers of cirrhotic cardiomyopathy are poorly understood, which might compromise the prognosis of chronic liver disease patients. We tested whether exercise training would reduce liver damage induced by thioacetamide and prevent liver cirrhosis-associated cardiomyopathy. Wistar rats were divided into three groups: control, thioacetamide (TAA), or TAA plus exercise. Thioacetamide increased liver weight and serum alanine aminotransferase and aspartate aminotransferase levels. Also, TAA treatment was involved with hepatic nodule formation, fibrotic septa, inflammatory infiltration, and hepatocyte necrosis. The exercise group presented with a reduction in liver injury status. We found that liver injury was associated with disordered cardiac hypertrophy as well as diastolic and systolic dysfunction. Exercise training attenuated cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment. These results provided insights that exercise training can mitigate cirrhotic cardiomyopathy phenotype. Graphical Abstract Exercise training attenuated liver injury as well as cirrhosis-associated cardiac remodeling and diastolic dysfunction and prevented systolic impairment.


Assuntos
Cardiomiopatias/prevenção & controle , Terapia por Exercício , Cirrose Hepática/terapia , Condicionamento Físico Humano , Animais , Função do Átrio Esquerdo , Biomarcadores/sangue , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Tolerância ao Exercício , Humanos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Miocárdio/patologia , Ratos Wistar , Tioacetamida , Função Ventricular Esquerda
13.
Mol Cell Endocrinol ; 520: 111095, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253762

RESUMO

The literature has reported a higher prevalence of negative clinical outcomes due to Coronavirus disease 19 (COVID-19) in obese individuals. This can be explained by the cytokine storm, result from the cytokine production from both obesity and viral infection. Gamma-oryzanol (γOz) is a compound with anti-inflammatory and antioxidant activities. However, little is known about the γOz action as a possible agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ). The aim of this study was to test the hypothesis that γOz attenuates the cytokine storm by stimulating PPAR-γ in the adipose tissue. METHODS: Male Wistar rats were randomly divided into three experimental groups and fed ad libitum for 30 weeks with control diet (C, n = 6), high sugar-fat diet (HSF, n = 6) or high sugar-fat diet + Î³Oz (HSF + Î³Oz, n = 6). HSF groups also received water + sucrose (25%). The γOz dose was 0.5% in the chow. Evaluation in animals included caloric intake, body weight, adiposity index, plasma triglycerides, and HOMA-IR. In adipose tissue was evaluated: PPAR-γ gene and protein expression, inflammatory and oxidative stress parameters, and histological analysis. RESULTS: Adipose tissue dysfunction was observed in HSF group, which presented remarkable PPAR-γ underexpression and increased levels of cytokines, other inflammatory markers and oxidative stress. The γOz treatment prevented adipose tissue dysfunction and promoted PPAR-γ overexpression. CONCLUSION: Natural compounds as γOz can be considered a coadjutant therapy to prevent the cytokine storm in COVID-19 patients with obesity conditions.


Assuntos
Tecido Adiposo/metabolismo , Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Fenilpropionatos/farmacologia , SARS-CoV-2/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/virologia , Animais , COVID-19/metabolismo , COVID-19/patologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Inflamação/virologia , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
14.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261912

RESUMO

The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is one of the most important oxidative stress regulator in the human body. Once Nrf2 regulates the expression of a large number of cytoprotective genes, it plays a crucial role in the prevention of several diseases, including age-related disorders. However, the involvement of Nrf2 on these conditions is complex and needs to be clarified. Here, a brief compilation of the Nrf2 enrollment in the pathophysiology of the most common age-related diseases and bring insights for future research on the Nrf2 pathway is described. This review shows a controversial response of this transcriptional factor on the presented diseases. This reinforces the necessity of more studies to investigate modulation strategies for Nrf2, making it a possible therapeutic target in the treatment of age-related disorders.


Assuntos
Envelhecimento/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipertensão/metabolismo , Fator 2 Relacionado a NF-E2/genética , Osteoporose/metabolismo , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...