Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 455(7215): 975-8, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18923525

RESUMO

Neuroblastoma, an embryonal tumour of the peripheral sympathetic nervous system, accounts for approximately 15% of all deaths due to childhood cancer. High-risk neuroblastomas are rapidly progressive; even with intensive myeloablative chemotherapy, relapse is common and almost uniformly fatal. Here we report the detection of previously unknown mutations in the ALK gene, which encodes a receptor tyrosine kinase, in 8% of primary neuroblastomas. Five non-synonymous sequence variations were identified in the kinase domain of ALK, of which three were somatic and two were germ line. The most frequent mutation, F1174L, was also identified in three different neuroblastoma cell lines. ALK complementary DNAs encoding the F1174L and R1275Q variants, but not the wild-type ALK cDNA, transformed interleukin-3-dependent murine haematopoietic Ba/F3 cells to cytokine-independent growth. Ba/F3 cells expressing these mutations were sensitive to the small-molecule inhibitor of ALK, TAE684 (ref. 4). Furthermore, two human neuroblastoma cell lines harbouring the F1174L mutation were also sensitive to the inhibitor. Cytotoxicity was associated with increased amounts of apoptosis as measured by TdT-mediated dUTP nick end labelling (TUNEL). Short hairpin RNA (shRNA)-mediated knockdown of ALK expression in neuroblastoma cell lines with the F1174L mutation also resulted in apoptosis and impaired cell proliferation. Thus, activating alleles of the ALK receptor tyrosine kinase are present in primary neuroblastoma tumours and in established neuroblastoma cell lines, and confer sensitivity to ALK inhibition with small molecules, providing a molecular rationale for targeted therapy of this disease.


Assuntos
Mutação/genética , Neuroblastoma/genética , Neuroblastoma/terapia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Alelos , Quinase do Linfoma Anaplásico , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Ativação Enzimática/genética , Genoma Humano/genética , Humanos , Hibridização in Situ Fluorescente , Marcação In Situ das Extremidades Cortadas , Camundongos , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína/genética , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases , Análise de Sequência de DNA
3.
Antimicrob Agents Chemother ; 49(12): 4942-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16304156

RESUMO

We report the structure-guided discovery, synthesis, and initial characterization of 3,5-diamino-piperidinyl triazines (DAPT), a novel translation inhibitor class that targets bacterial rRNA and exhibits broad-spectrum antibacterial activity. DAPT compounds were designed as structural mimetics of aminoglycoside antibiotics which bind to the bacterial ribosomal decoding site and thereby interfere with translational fidelity. We found that DAPT compounds bind to oligonucleotide models of decoding-site RNA, inhibit translation in vitro, and induce translation misincorporation in vivo, in agreement with a mechanism of action at the ribosomal decoding site. The novel DAPT antibacterials inhibit growth of gram-positive and gram-negative bacteria, including the respiratory pathogen Pseudomonas aeruginosa, and display low toxicity to human cell lines. In a mouse protection model, an advanced DAPT compound demonstrated efficacy against an Escherichia coli infection at a 50% protective dose of 2.4 mg/kg of body weight by single-dose intravenous administration.


Assuntos
Aminoglicosídeos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Antibacterianos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Desenho de Fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Piperidinas/farmacologia , Conformação Proteica , Ribossomos/efeitos dos fármacos , Relação Estrutura-Atividade , Triazinas/farmacologia
4.
J Med Chem ; 45(26): 5755-75, 2002 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-12477359

RESUMO

Highly potent human glucagon receptor (hGluR) antagonists have been prepared employing both medicinal chemistry and targeted libraries based on modification of the core (proximal) dimethoxyphenyl group, the benzyl ether linkage, as well as the (distal) benzylic aryl group of the lead 2, 3-cyano-4-hydroxybenzoic acid (3,5-dimethoxy-4-isopropylbenzyloxybenzylidene)hydrazide. Electron-rich proximal aryl moieties such as mono- and dimethoxy benzenes, naphthalenes, and indoles were found to be active. The SAR was found to be quite insensitive regarding the linkage to the distal aryl group, since long and short as well as polar and apolar linkers gave highly potent compounds. The presence of a distal aryl group was not crucial for obtaining high binding affinity to the hGluR. In many cases, however, the affinity could be further optimized with substituted distal aryl groups. Representative compounds have been tested for in vitro metabolism, and structure-metabolism relationships are described. These efforts lead to the discovery of 74, NNC 25-2504, 3-cyano-4-hydroxybenzoic acid [1-(2,3,5,6-tetramethylbenzyl)-1H-indol-4-ylmethylene]hydrazide, with low in vitro metabolic turnover. 74 was a highly potent noncompetitive antagonist of the human glucagon receptor (IC(50) = 2.3 nM, K(B) = 760 pM) and of the isolated rat receptor (IC(50) = 430 pM, K(B) = 380 pM). Glucagon-stimulated glucose production from isolated primary rat hepatocytes was inhibited competitively by 74 (K(i) = 14 nM). This compound was orally available in dogs (F(po) = 15%) and was active in a glucagon-challenged rat model of hyperglucagonemia and hyperglycemia.


Assuntos
Hidrazinas/síntese química , Indóis/síntese química , Receptores de Glucagon/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Células Cultivadas , Cães , Glucagon/sangue , Glucose/biossíntese , Hepatócitos/metabolismo , Humanos , Hidrazinas/farmacocinética , Hidrazinas/farmacologia , Hiperglicemia/metabolismo , Indóis/farmacocinética , Indóis/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 12(4): 663-6, 2002 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-11844695

RESUMO

A series of alkylidene hydrazide derivatives containing an alkoxyaryl moiety was optimized. The resulting hydrazide-ethers were competitive antagonists at the human glucagon receptor. Pharmacokinetic experiments showed fast clearance of most of the compounds tested. A representative compound [4-hydroxy-3-cyanobenzoic acid (4-isopropylbenzyloxy-3,5-dimethoxymethylene)hydrazide] with an IC50 value of 20 nM was shown to reduce blood glucose levels in fasted rats.


Assuntos
Hidrazinas/síntese química , Hidrazinas/farmacocinética , Hipoglicemiantes/síntese química , Receptores de Glucagon/antagonistas & inibidores , Animais , Ligação Competitiva , Glicemia/efeitos dos fármacos , Humanos , Hidrazinas/administração & dosagem , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Concentração Inibidora 50 , Injeções , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...