Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.030
Filtrar
1.
Insects ; 15(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39194789

RESUMO

Optical sensors have shown significant promise in offering additional data to track insect populations. This article presents a comparative study between abundance measurements obtained from a novel near-infrared optical sensor and physical traps. The optical instrument, named an Entomological Bistatic Optical Sensor System, or eBoss, is a non-destructive sensor operating in the near-infrared spectral range and designed to continuously monitor the population of flying insects. The research compares the mosquito aerial density (#/m3) obtained through the eBoss with trap counts from eight physical traps during an eight-month field study. The eBoss recorded over 302,000 insect sightings and assessed the aerial density of all airborne insects as well as male and female mosquitoes specifically with a resolution of one minute. This capability allows for monitoring population trends throughout the season as well as daily activity peaks. The results affirmed the correlation between the two methods. While optical instruments do not match traps in terms of taxonomic accuracy, the eBoss offered greater temporal resolution (one minute versus roughly three days) and statistical significance owing to its much larger sample size. These outcomes further indicate that entomological optical sensors can provide valuable complementary data to more common methods to monitor flying insect populations, such as mosquitoes or pollinators.

2.
Cell Rep ; 43(8): 114629, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39146183

RESUMO

In mice, the first liver-resident macrophages, known as Kupffer cells (KCs), are thought to derive from yolk sac (YS) hematopoietic progenitors that are specified prior to the emergence of the hematopoietic stem cell (HSC). To investigate human KC development, we recapitulated YS-like hematopoiesis from human pluripotent stem cells (hPSCs) and transplanted derivative macrophage progenitors into NSG mice previously humanized with hPSC-liver sinusoidal endothelial cells (LSECs). We demonstrate that hPSC-LSECs facilitate stable hPSC-YS-macrophage engraftment for at least 7 weeks. Single-cell RNA sequencing (scRNA-seq) of engrafted YS-macrophages revealed a homogeneous MARCO-expressing KC gene signature and low expression of monocyte-like macrophage genes. In contrast, human cord blood (CB)-derived macrophage progenitors generated grafts that contain multiple hematopoietic lineages in addition to KCs. Functional analyses showed that the engrafted KCs actively perform phagocytosis and erythrophagocytosis in vivo. Taken together, these findings demonstrate that it is possible to generate human KCs from hPSC-derived, YS-like progenitors.


Assuntos
Diferenciação Celular , Células Endoteliais , Células de Kupffer , Fígado , Células-Tronco Pluripotentes , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Animais , Fígado/citologia , Fígado/metabolismo , Camundongos , Fagocitose , Hematopoese
3.
J Am Coll Radiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117182

RESUMO

OBJECTIVE: To report data from the first three years of operation of the RSNA-ACR 3D Printing Registry. METHODS: Data from June 2020 to June 2023 was extracted, including demographics, indications, workflow and user assessments. Clinical indications were stratified by 12 organ systems. Imaging modalities, printing technologies and number of parts per case were assessed. Effort data was analyzed, dividing staff into provider and non-provider categories. The opinions of clinical users were evaluated through a Likert-scale questionnaire, and estimates of procedure time saved were collected. RESULTS: A total of 20 sites and 2,637 cases were included, consisting of 1,863 anatomic models and 774 anatomic guides. Mean patient age for models and guides was 42.4 ± 24.5 years and 56.3 ± 18.5 years respectively. Cardiac models were the most common type of models (27.2%), and neurologic guides were the most common type of guides (42.4%). Material jetting, vat photopolymerization and material extrusion were the most common printing technologies used overall (85.6% of all cases). On average, providers spent 92.4 minutes and non-providers spent 335.0 minutes per case. Providers spent most time on consultation (33.6 minutes), while non-providers focused most on segmentation (148.0 minutes). Confidence in treatment plans increased after using 3D printing (p<.001). Estimated procedure time savings for 155 cases was 40.5 ± 26.1 minutes. CONCLUSION: 3D printing is performed in healthcare facilities for many clinical indications. The registry provides insight into the technologies and workflows used to create anatomic models and guides, and the data shows clinical benefits from 3D printing.

4.
Nat Cardiovasc Res ; 3(5): 567-593, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39086373

RESUMO

Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.

5.
Microbiology (Reading) ; 170(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115544

RESUMO

Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.


Assuntos
Alanina Racemase , Isomerases de Aminoácido , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/efeitos dos fármacos , Isomerases de Aminoácido/genética , Isomerases de Aminoácido/metabolismo , Alanina Racemase/genética , Alanina Racemase/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/farmacologia , Parede Celular/metabolismo , Parede Celular/genética
6.
Soft Matter ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145479

RESUMO

Inspired by adhesive bio-filamentous structure, such as bacterial pili, this work details the methods used to fabricate and characterize a surface-anchored array of thin, flexible and shape-responsive mesoscale polymer ribbons with a length-to-thickness aspect ratio of up to 100 000. The resulting structures exhibit geometrically complex and dynamic morphologies consistent with elastocapillary bending that experience an increase in curvature over hours of aging due to creep. We develop a computational image analysis framework to generate 3D reconstructions of these densely crowded geometries and extract quantitative descriptors to demonstrate morphological changes due to aging. We demonstrate the robustness of this quantitative method by characterizing the creep-induced change in an aging ribbon array's shape and develop a scaling relationship to describe the importance of ribbon thickness for shape and dynamical observations. These methods demonstrate an essential baseline to probe morphology-property relationships of mesoscale polymer ribbon arrays fabricated from a variety of materials in numerous environments. Through the introduction of perfluorodecalin droplets, we illustrate the potential of these ribbon arrays towards applications in adhesive, microrobotic, and biomedical devices.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39111348

RESUMO

The Consortium of Eosinophilic Gastrointestinal disease Researchers (CEGIR) and The International Gastrointestinal Eosinophil Researchers (TIGERS) organized a day-long symposium at the 2024 Annual Meeting of the American Academy of Allergy, Asthma & Immunology. The symposium featured new discoveries in basic and translational research and debates on the mechanisms and management of eosinophilic gastrointestinal diseases (EGIDs). Updates on recent clinical trials and consensus guidelines were also presented. Herein, we summarize the updates on EGIDs presented at the symposium.

8.
J Prim Care Community Health ; 15: 21501319241271907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135504

RESUMO

Low back pain is the most common musculoskeletal complaint accounting for over 30 million visits to primary care physicians annually. Serious pathology is found in less than 1% of these visits. Therefore it is often a challenge to distinguish worrisome findings requiring further workup and treatment from common complaints of pain. Gout is an inflammatory arthritis that most commonly affects the appendicular skeleton. It is characterized by the saturation of uric acid and deposition of monosodium urate crystals in joints and tissues. Spinal involvement is rare and is not typically considered on the differential diagnosis for a patient presenting with acute low back pain. We present such a case of a 35-year-old male who presented with intractable back pain, highlighting the need to recognize signs and symptoms that raise suspicion for spinal gout.


Assuntos
Gota , Dor Lombar , Humanos , Masculino , Dor Lombar/etiologia , Adulto , Gota/complicações , Doenças da Coluna Vertebral/diagnóstico , Doenças da Coluna Vertebral/complicações , Diagnóstico Diferencial , Supressores da Gota/uso terapêutico
9.
Cell Commun Signal ; 22(1): 400, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143467

RESUMO

A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.


Assuntos
Acne Vulgar , Pele , Humanos , Acne Vulgar/genética , Acne Vulgar/patologia , Acne Vulgar/metabolismo , Pele/patologia , Pele/metabolismo , Transdução de Sinais/genética , Masculino , Macrófagos/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Subunidade alfa1 de Receptor de Interleucina-13/genética , Subunidade alfa1 de Receptor de Interleucina-13/metabolismo , Feminino
10.
Genome Res ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152038

RESUMO

Transcription Factors (TFs) regulate gene expression by facilitating or disrupting the formation of transcription initiation machinery at particular genomic loci. Since TF occupancy is driven in part by recognition of DNA sequence, genetic variation can influence TF-DNA associations and gene regulation. To identify variants that impact TF binding in human brain tissues, we assessed allele specific binding (ASB) at heterozygous variants for 94 TFs in 9 brain regions from two donors. Leveraging graph genomes constructed from phased genomic sequence data, we compared ChIP-seq signals between alleles at heterozygous variants within each brain region and identified thousands of variants exhibiting ASB for at least one TF. ASB reproducibility was measured by comparisons between independent experiments both within and between donors. We found that rarer alleles in the general population more frequently led to reduced TF binding, whereas common variation had an equal likelihood of increasing or decreasing binding. Motif analysis revealed TF-specific effects, with ASB variants for certain TFs displaying a greater incidence of motif alterations, as well as enrichments for variants under purifying selection. Notably, neuron-specific cis-regulatory elements (cCREs) showed depletion for ASB variants. We identified 2,670 ASB variants with prior evidence of allele-specific gene expression in the brain from GTEx data and observed increasing eQTL effect direction concordance as ASB significance increases. These results provide a valuable and unique resource for mechanistic analysis of cis-regulatory variation in human brain tissue.

11.
J Med Internet Res ; 26: e56500, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167785

RESUMO

BACKGROUND: Large language models including GPT-4 (OpenAI) have opened new avenues in health care and qualitative research. Traditional qualitative methods are time-consuming and require expertise to capture nuance. Although large language models have demonstrated enhanced contextual understanding and inferencing compared with traditional natural language processing, their performance in qualitative analysis versus that of humans remains unexplored. OBJECTIVE: We evaluated the effectiveness of GPT-4 versus human researchers in qualitative analysis of interviews with patients with adult-acquired buried penis (AABP). METHODS: Qualitative data were obtained from semistructured interviews with 20 patients with AABP. Human analysis involved a structured 3-stage process-initial observations, line-by-line coding, and consensus discussions to refine themes. In contrast, artificial intelligence (AI) analysis with GPT-4 underwent two phases: (1) a naïve phase, where GPT-4 outputs were independently evaluated by a blinded reviewer to identify themes and subthemes and (2) a comparison phase, where AI-generated themes were compared with human-identified themes to assess agreement. We used a general qualitative description approach. RESULTS: The study population (N=20) comprised predominantly White (17/20, 85%), married (12/20, 60%), heterosexual (19/20, 95%) men, with a mean age of 58.8 years and BMI of 41.1 kg/m2. Human qualitative analysis identified "urinary issues" in 95% (19/20) and GPT-4 in 75% (15/20) of interviews, with the subtheme "spray or stream" noted in 60% (12/20) and 35% (7/20), respectively. "Sexual issues" were prominent (19/20, 95% humans vs 16/20, 80% GPT-4), although humans identified a wider range of subthemes, including "pain with sex or masturbation" (7/20, 35%) and "difficulty with sex or masturbation" (4/20, 20%). Both analyses similarly highlighted "mental health issues" (11/20, 55%, both), although humans coded "depression" more frequently (10/20, 50% humans vs 4/20, 20% GPT-4). Humans frequently cited "issues using public restrooms" (12/20, 60%) as impacting social life, whereas GPT-4 emphasized "struggles with romantic relationships" (9/20, 45%). "Hygiene issues" were consistently recognized (14/20, 70% humans vs 13/20, 65% GPT-4). Humans uniquely identified "contributing factors" as a theme in all interviews. There was moderate agreement between human and GPT-4 coding (κ=0.401). Reliability assessments of GPT-4's analyses showed consistent coding for themes including "body image struggles," "chronic pain" (10/10, 100%), and "depression" (9/10, 90%). Other themes like "motivation for surgery" and "weight challenges" were reliably coded (8/10, 80%), while less frequent themes were variably identified across multiple iterations. CONCLUSIONS: Large language models including GPT-4 can effectively identify key themes in analyzing qualitative health care data, showing moderate agreement with human analysis. While human analysis provided a richer diversity of subthemes, the consistency of AI suggests its use as a complementary tool in qualitative research. With AI rapidly advancing, future studies should iterate analyses and circumvent token limitations by segmenting data, furthering the breadth and depth of large language model-driven qualitative analyses.


Assuntos
Pesquisa Qualitativa , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Análise de Dados , Pesquisadores/psicologia , Pesquisadores/estatística & dados numéricos , Idoso
12.
Soft Matter ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171459

RESUMO

We employ the phospholipid bilayer membranes of giant unilamellar vesicles as a free-standing environment for the growth of membrane-integrated ultrathin phospholipid crystals possessing a variety of shapes with 6-fold symmetry. Crystal growth within vesicle membranes, where more elaborate shapes grow on larger vesicles is dominated by the bending energy of the membrane itself, creating a means to manipulate crystal morphology. Here we demonstrate how cooling rate preconditions the membrane tension before nucleation, in turn regulating nucleation and growth, and directing the morphology of crystals by the time they are large enough to be visualized. The crystals retain their shapes during further growth through the two phase region. Experiments demonstrate this behavior for single crystals growing within the membrane of each vesicle, ultimately comprising up to 13% of the vesicle area and length scales of up to 50 microns. A model for stress evolution, employing only physical property data, reveals how the competition between thermal membrane contraction and water diffusion from tensed vesicles produces a size- and time-dependence of the membrane tension as a result of cooling history. The tension, critical in the contribution of bending energy in the fluid membrane regions, in turn selects for crystal shape for vesicles of a given size. The model reveals unanticipated behaviors including a low steady state tension on small vesicles that allows compact domains to develop, rapid tension development on large vesicles producing flower-shaped domains, and a stress relaxation through water diffusion across the membrane with a time constant scaling as the square of the vesicle radius, consistent with measurable tensions only in the largest vesicles.

13.
Mil Med ; 189(Supplement_3): 448-455, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160881

RESUMO

INTRODUCTION: Current standards for hemoglobin monitoring during air transports of U.S. combat wounded are invasive and intermittent. Fielded pulse co-oximeters can noninvasively measure total hemoglobin, but this parameter is not currently utilized. The primary objective of this study was to assess the percentage of vital sign measurements with successful capture of total noninvasive hemoglobin measurement using spectrophotometry-based technology for Hb (SpHb) measurements in healthy participants during training flights. Secondary objectives were to assess the feasibility of a novel electronic data capture mechanism from usual patient movement items and perform a pilot analysis of SpHb changes in healthy participants during transitions from ground to air transport. METHODS: We conducted a feasibility study enrolling healthy participants who had hemodynamic monitoring during usual U.S. Air Force Critical Care Air Transport (CCAT) flight training exercises from 2022 to 2023. Usual CCAT monitoring equipment and currently used Masimo Rainbow® pulse co-oximeters had the capability to measure SpHb. After each training exercise, the study team wirelessly downloaded case files from patient monitors utilizing the Battlefield Assisted Trauma Distributed Observation Kit (BATDOKTM) Case Downloader application. We then calculated point and precision estimates for the percentage of time for successful SpHb capture during the exercise and compared this to pulse oximetry (SpO2) capture. An a priori precision analysis for percentage of flight-time with successful SpHb data capture and descriptive statistics were performed. This study received Exempt Determination by the 59th Medical Wing IRB. RESULTS: We analyzed 26 records with mean monitoring durations of 94.5 [59.3-119.9] minutes during ground phases and 78.0 [59.9-106.5] minutes during flight phases. SpHb measures were successfully captured for 97.7% (n = 4,620) of possible ground measurements and 97.2% (n = 3,973) of possible in-flight measurements compared to 99.5% ground and 98.2% in-flight capture for SpO2. Mean intervals of missing SpHb data were 2 ± 5 minutes on the ground and 4 ± 6 minutes in-flight. Mean SpHb increased by 0.93 ± 0.96 g/dL during the ground phase, but had minimal changes during ascent, cruising altitude or descent. The BATDOKTM Case downloader completed transfer for all files. CONCLUSION: Masimo Rainbow® SpHb pulse co-oximeters reliably captured continuous, noninvasive hemoglobin measurements using usual CCAT patient movement items in healthy participants during both ground and flight training. The BATDOKTM Case Downloader successfully imported case files from CCAT patient monitors. Mean SpHb measures had a small increase during the ground phase of monitoring followed by minimal changes when transitioning to flight altitude.


Assuntos
Oximetria , Humanos , Resgate Aéreo/estatística & dados numéricos , Estudos de Viabilidade , Voluntários Saudáveis/estatística & dados numéricos , Hemoglobinas/análise , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/estatística & dados numéricos , Monitorização Fisiológica/normas , Oximetria/métodos , Oximetria/normas , Oximetria/instrumentação , Oximetria/estatística & dados numéricos , Reprodutibilidade dos Testes
14.
Phys Rev E ; 110(1-1): 014212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39160982

RESUMO

We present an approach for studying the primary, secondary, and tertiary flow transitions in sheared annular electroconvection. In particular, we describe a Newton-Krylov method based on time integration for the computation of rotating waves and amplitude-modulated rotating waves, and for the continuation of these flows as a parameter of the system is varied. The method exploits the rotational nature of the flows and requires only a time-stepping code of the model differential equations, i.e., it does not require an explicit code for the discretization of the linearized equations. The linear stability of the solutions is computed to identify the parameter values at which the transitions occur. We apply the method to a model of electroconvection that simulates the flow of a liquid crystal film in the smectic A phase suspended between two annular electrodes and subjected to an electric potential difference and a radial shear. Due to the layered structure of the smectic A phase, the fluid can be treated as two-dimensional (2D) and is modeled using the 2D incompressible Navier-Stokes equations coupled with an equation for charge continuity. The system is a close analog to laboratory-scale geophysical fluid experiments and thus represents an ideal system in which to apply the method before its application to these other systems that exhibit similar flow transitions. In the model for electroconvection, we identify the parameter values at which the primary transition from steady axisymmetric flow to rotating waves occurs, as well as at which the secondary transition from the rotating waves to amplitude-modulated rotating waves occurs. In addition, we locate the tertiary transition, which corresponds to a transition from the amplitude-modulated waves to a three-frequency flow. Of particular interest is that the method also finds a period-doubling bifurcation from the amplitude-modulated rotating waves and a subsequent transition from the flow resulting from this bifurcation.

16.
J Neurosurg Spine ; : 1-7, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178468

RESUMO

OBJECTIVE: Advances in surface architecture and technology have made interbody fusion devices more bioactive, with the hope of facilitating the fusion process more successfully. The advent of these increasingly bioactive implants may reduce reliance on more expensive biologics that have previously been used to achieve high fusion rates. METHODS: A retrospective review of prospectively collected data (August 2018-December 2019) was conducted of consecutively performed anterior lumbar interbody fusions in which an acid-etched, nanosurface-modulated, titanium interbody device packed only with corticocancellous allograft chips and local blood was used. Minimum follow-up was 1 year, and inclusion required available imaging and outcome metrics preoperatively and at 1 year. Fusion and subsidence were assessed via CT scans and/or dynamic radiographs. Health-related quality-of-life measures (Oswestry Disability Index [ODI], visual analog scale [VAS] back/leg) were collected pre- and postoperatively. RESULTS: In total, 55 patients met inclusion criteria (1 year of follow-up, available imaging, and outcome metrics). A total of 69 lumbar levels were treated in these 55 patients. The mean age was 67 ± 12.1 years, with 47% female patients. Roughly one-third (35%) had previous spine surgery, and approximately one-tenth (9.1%) had prior spinal fusion. A total of 20.6% were treated at multiple levels (mean levels per patient 1.2, minimum 1, maximum 3). The mean preoperative patient-reported outcomes were as follows: ODI 39.71 ± 18.15, VAS back 6.49 ± 2.19, and VAS leg 5.41 ± 2.71. One year after surgery, the mean improvements in patient-reported outcomes (vs preoperative scores) were as follows: ODI -22.9 ± 13.08 (p < 0.001), VAS back -3.75 ± 2.03 (p < 0.001), VAS leg -3.73 ± 2.32 (p < 0.001). All levels achieved fusion at 1 year postoperatively based on CT scans (65/69 levels) or dynamic radiographs (4/69 levels, change in score < 5% on flexion-extension radiographs). Four of the 65 levels were assigned to the grade 3 category according to a CT-based grading system, meaning cranial and caudal endplate bone apposition to the implant on both surfaces with no clear intervertebral bone connection through or around the implant. Sixty-one of 65 were found to have contiguous intervertebral bone bridging and thus were assigned to grade 1 (n = 54) or grade 2 (n = 7). Low-grade graft subsidence (Marchi grade 0 or I) occurred in 9 levels (13.0%) and high-grade subsidence (Marchi grade II or III) in 4 levels (5.8%). No patients required reoperation at the level of anterior lumbar interbody fusion and no radiographic or clinical evidence of pedicle screw loosening or failure was observed. CONCLUSIONS: The combination of advances in materials science and surface technology as demonstrated with a nanotechnology titanium cage resulted in the ability to obtain lumbar interbody fusion with allograft chips and local blood alone. Achieving high fusion rates with low-cost biologics/allograft provides for an attractive pathway toward reducing the cost of reconstructive spine care, and a potential incremental benefit for healthcare economics.

17.
Int J Spine Surg ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39181716

RESUMO

BACKGROUND: Lumbar lordosis distribution has become a pivotal factor in re-establishing the foundational alignment of the lumbar spine. This can directly influence overall sagittal alignment, leading to improved long-term outcomes for patients. Despite the wide availability of hyperlordotic stock cages intended to achieve optimal postoperative alignment, there is a lack of correlation between the lordotic shape of a cage and the resultant intervertebral alignment. Recently, personalized spine surgery has witnessed significant advancements, including 3D-printed personalized interbody implants, which are customized to the surgeon's treatment and alignment goals. This study evaluates the reliability of 3D-printed patient-specific interbody implants to achieve the planned postoperative intervertebral alignment. METHODS: This is a retrospective study of 217 patients with spinal deformity or degenerative conditions. Patients were included if they received 3D-printed personalized interbody implants. The desired intervertebral lordosis (IVL) angle was prescribed into the device design for each personalized interbody (IVL goal). Standing postoperative radiographs were measured, and the IVL offset was calculated as IVL achieved minus IVL goal. RESULTS: In this patient population, 365 personalized interbodies were implanted, including 145 anterior lumbar interbody fusions (ALIFs), 99 lateral lumbar interbody fusions (LLIFs), and 121 transforaminal lumbar interbody fusions. Among the 365 treated levels, IVL offset was 1.1° ± 4.4° (mean ± SD). IVL was achieved within 5° of the plan in 299 levels (81.9%). IVL offset depended on the approach of the lumbar interbody fusion and was achieved within 5° for 85.9% of LLIF, 82.6% of transforaminal lumbar interbody fusions and 78.6% of ALIFs. Ten levels (2.7%) missed the planned IVL by >10°. ALIF and LLIF levels in which the plan was missed by more than 5° tended to be overcorrected. CONCLUSIONS: This study supports the use of 3D-printed personalized interbody implants to achieve planned sagittal intervertebral alignment. CLINICAL RELEVANCE: Personalized interbody implants can consistently achieve IVL goals and potentially impact foundational lumbar alignment.

18.
bioRxiv ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39185238

RESUMO

Cells mechanically interface with their surroundings through cytoskeleton-linked adhesions, allowing them to sense physical cues that instruct development and drive diseases such as cancer. Contractile forces generated by myosin motor proteins mediate these mechanical signal transduction processes through unclear protein structural mechanisms. Here, we show that myosin forces elicit structural changes in actin filaments (F-actin) that modulate binding by the mechanosensitive adhesion protein α-catenin. Using correlative cryo-fluorescence microscopy and cryo-electron tomography, we identify F-actin featuring domains of nanoscale oscillating curvature at cytoskeleton-adhesion interfaces enriched in zyxin, a marker of actin-myosin generated traction forces. We next introduce a reconstitution system for visualizing F-actin in the presence of myosin forces with cryo-electron microscopy, which reveals morphologically similar superhelical F-actin spirals. In simulations, transient forces mimicking tugging and release of filaments by motors produce spirals, supporting a mechanistic link to myosin's ATPase mechanochemical cycle. Three-dimensional reconstruction of spirals uncovers extensive asymmetric remodeling of F-actin's helical lattice. This is recognized by α-catenin, which cooperatively binds along individual strands, preferentially engaging interfaces featuring extended inter-subunit distances while simultaneously suppressing rotational deviations to regularize the lattice. Collectively, we find that myosin forces can deform F-actin, generating a conformational landscape that is detected and reciprocally modulated by a mechanosensitive protein, providing a direct structural glimpse at active force transduction through the cytoskeleton.

19.
J Affect Disord ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39187183

RESUMO

BACKGROUND: Early life adversity is a risk factor for psychopathology and is associated with epigenetic alterations in the 5-HT1A receptor gene promoter. The 5-HT1A receptor mediates neurotrophic effects, which could affect brain structure and function. We examined relationships between self-reported early childhood abuse, 5-HT1A receptor promoter DNA methylation, and gray matter volume (GMV) in Major Depressive Disorder (MDD). METHODS: Peripheral DNA methylation of 5-HT1A receptor promoter CpG sites -681 and -1007 was assayed in 50 individuals with MDD, including 18 with a history of childhood abuse. T1-weighted structural magnetic resonance imaging (MRI) was performed. Voxel-based morphometry (VBM) was quantified in amygdala, hippocampus, insula, occipital lobe, orbitofrontal cortex, temporal lobe, parietal lobe, and at the voxel level. RESULTS: No relationship was observed between DNA methylation and history of childhood abuse. We observed regional heterogeneity comparing -681 CpG site methylation and GMV (p = 0.014), with a positive relationship to GMV in orbitofrontal cortex (p = 0.035). Childhood abuse history was associated with higher GMV considering all ROIs simultaneously (p < 0.01). In whole-brain analyses, childhood abuse history was positively correlated with GMV in multiple clusters, including insula and orbitofrontal cortex (pFWE = 0.005), and negatively in intracalcarine cortex (pFWE = 0.001). LIMITATIONS: Small sample size, childhood trauma assessment instrument used, and assay of peripheral, rather than CNS, methylation. CONCLUSIONS: These cross-sectional findings support hypotheses of 5-HT1A receptor-related neurotrophic effects, and of increased regional GMV as a potential regulatory mechanism in the setting of childhood abuse. Orbitofrontal cortex was uniquely associated with both childhood abuse history and 5-HT1A receptor methylation.

20.
Mol Pharmacol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187389

RESUMO

The orexigenic gut peptide ghrelin is an endogenous ligand for the growth hormone secretagogue receptor type 1a (GHSR1a). Systemic ghrelin administration has previously been shown to increase gastric motility and emptying. While these effects are known to be mediated by the vagus nerve, the cellular mechanism underlying these effects remains unclear. Therefore, the purpose of the present study was to investigate the signaling mechanism by which GHSR1a inhibits voltage-gated Ca2+ channels in isolated rat gastric vagal afferent neurons using whole-cell patch-clamp electrophysiology. The ghrelin pharmacological profile indicated that Ca2+ currents were inhibited with a log (Ic50)=-2.10 {plus minus} 0.44 and a maximal inhibition of 42.8 {plus minus} 5.0%. Exposure to the GHSR1a receptor antagonist (D-Lys3)-GHRP-6 reduced ghrelin-mediated Ca2+ channel inhibition (29.4 {plus minus} 16.7% vs 1.9 {plus minus} 2.5%, n=6, p=0.0064). Interestingly, we observed that activation of GHSR1a inhibited Ca2+ currents through both voltage-dependent and voltage-independent pathways. We also treated the gastric neurons with either pertussis toxin (PTX) or YM-254890 to examine whether the Ca2+ current inhibition was mediated by Gαi/o or Gαq/11 family of subunits. Treatment with both PTX (Ca2+ current inhibition=15.7 {plus minus} 10.6%, n=8, p=0.0327) and YM-254890 (15.2 {plus minus} 11.9%, n=8, p=0.0269) blocked ghrelin's effects on Ca2+ currents, as compared to control neurons (34.3 {plus minus} 18.9%, n=8). These results indicate GHSR1a can couple to both Gαi/o and Gαq/11 in gastric vagal afferent neurons. Overall, our findings suggest GHSR1a-mediated inhibition of Ca2+ currents occurs through two distinct pathways, offering necessary insights into the cellular mechanisms underlying ghrelin's regulation of gastric vagal afferents. Significance Statement This study demonstrated that in gastric vagal afferent neurons, activation of GHSR1a by ghrelin inhibits voltage-gated Ca2+ channels through both voltage-dependent and voltage-independent signaling pathways. These results provide necessary insight into the cellular mechanism underlying ghrelin regulation of gastric vagal afferent activity, which may benefit future studies investigating ghrelin mimetics to treat gastric motility disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...