Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2394: 93-107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094324

RESUMO

Improving the utilization of tumor tissue from diagnostic biopsies is an unmet medical need. This is especially relevant today in the rapidly evolving precision oncology field where tumor genotyping is often essential for the indication of many advanced and targeted therapies. National Comprehensive Cancer Network (NCCN) guidelines now mandate molecular testing for clinically actionable targets in certain malignancies. Utilizing advanced stage lung cancer as an example, an improved genotyping approach for solid tumors is possible. The strategy involves optimization of the microdissection process and analysis of a large number of identical target cells from formalin-fixed paraffin-embedded (FFPE) specimens sharing similar characteristics, in other words, single-cell subtype analysis. The shared characteristics can include immunostaining status, cell phenotype, and/or spatial location within a histological section. Synergy between microdissection and droplet digital PCR (ddPCR) enhances the molecular analysis. We demonstrate here a methodology that illustrates genotyping of a solid tumor from a small tissue biopsy sample in a time- and cost-efficient manner, using immunostain targeting as an example.


Assuntos
Microdissecção , Neoplasias , Formaldeído , Humanos , Microdissecção/métodos , Inclusão em Parafina/métodos , Reação em Cadeia da Polimerase/métodos , Medicina de Precisão , Fixação de Tecidos/métodos
2.
Int J Legal Med ; 134(3): 1239-1253, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31520174

RESUMO

An immunoassay was previously developed as a technique to improve methods for detection and analysis of fly artifacts found at crime scenes. The dot blot assay utilized a polyclonal antiserum (anti-md3) based on a unique digestive cathepsin D found in cyclorrhaphous Diptera. In this study, artifacts produced by adults of Calliphora vicina, Cynomya cadaverina, Sarcophaga bullata, and Protophormia terraenovae were examined using the immunoassay to determine if insect-derived stains could be distinguished from a range of human body fluid stains. A lift technique was developed which permitted transfer of fly artifacts from test materials to filter paper for dot blot analyses. All species readily deposited artifacts on all test household materials regardless of diet consumed. Despite differences in texture and porosity of the household materials, artifacts of all species transferred to the filter paper. With all fly species, anti-md3 serum bound to artifacts produced after feeding on semen, blood, feces, urine, and saliva. By contrast, anti-md3 serum did not react with any of the human fluids tested, nor with any of the lifts from household materials not exposed to flies. There was no evidence of false positives with any of the fly species tested, regardless of diet consumed. There was also no indication of false negatives with any of the dot blot assays. These observations suggest that immunoassays using anti-md3 serum performed on a simple lift of suspected fly artifacts can be used effectively as a confirmatory assay to distinguish fly regurgitate and fecal stains from human body fluids.


Assuntos
Artefatos , Líquidos Corporais/química , Dípteros , Entomologia Forense , Soros Imunes/análise , Animais , Manchas de Sangue , Fezes/química , Comportamento Alimentar , Imunoensaio , Saliva/química , Sêmen/química , Urina/química
3.
Forensic Sci Int ; 1: 1-10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32411948

RESUMO

Foraging behavior of necrophagous flies commonly leads to distortion of human bloodstains and production of artifacts that confound reconstruction efforts at crime scenes. Currently there is no reliable method for detection of fly-derived stains or distinction of the artifacts from human bloodstains. To overcome these deficiencies, a confirmatory test was developed based on immunological detection of cathepsin D found in digestive fluids of Musca domestica and Protophormia terraenovae. Anti-serum (anti-md3 serum) was generated toward a 17-amino acid synthetic peptide based upon predicted antigenic amino acid sequences for the propeptide and mature enzyme of cathepsin D proteinase from larvae of M. domestica. The serum was used to test the hypothesis that digestive artifacts produced by an array of necrophagous flies associated with human decomposition could be detected with the immunoassay. Anti-md3 serum was able to bind artifacts from 27 species of flies representing 9 families. The antiserum reacted with both regurgitate and defecatory stains, but not transfer patterns. Stains from 4 fly species displayed no reactivity with anti-serum in dot blot assays. Anti-md3 serum did not bind to either human or bovine blood stains on filter paper. However, when both types of blood were spiked with synthetic md3 peptide the antiserum was able to bind. Dot blot assays displayed positive reactions with stains produced from larvae and teneral adults of Sarcophaga bullata, and with artifacts as old as 7-years after deposition. These observations indicate that the immunoassay permits distinction of artifacts from a wide range of species from human bloodstains, from multiple development stages, and from artifacts that remain at crime scenes for many months to years after deposition. Further work is needed to determine whether the detection of fly artifacts using the antiserum is suitable for non-laboratory conditions.


Assuntos
Manchas de Sangue , Dípteros/fisiologia , Animais , Entomologia , Comportamento Alimentar , Ciências Forenses , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...