Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i100-i109, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940181

RESUMO

MOTIVATION: The inference of cellular compositions from bulk and spatial transcriptomics data increasingly complements data analyses. Multiple computational approaches were suggested and recently, machine learning techniques were developed to systematically improve estimates. Such approaches allow to infer additional, less abundant cell types. However, they rely on training data which do not capture the full biological diversity encountered in transcriptomics analyses; data can contain cellular contributions not seen in the training data and as such, analyses can be biased or blurred. Thus, computational approaches have to deal with unknown, hidden contributions. Moreover, most methods are based on cellular archetypes which serve as a reference; e.g. a generic T-cell profile is used to infer the proportion of T-cells. It is well known that cells adapt their molecular phenotype to the environment and that pre-specified cell archetypes can distort the inference of cellular compositions. RESULTS: We propose Adaptive Digital Tissue Deconvolution (ADTD) to estimate cellular proportions of pre-selected cell types together with possibly unknown and hidden background contributions. Moreover, ADTD adapts prototypic reference profiles to the molecular environment of the cells, which further resolves cell-type specific gene regulation from bulk transcriptomics data. We verify this in simulation studies and demonstrate that ADTD improves existing approaches in estimating cellular compositions. In an application to bulk transcriptomics data from breast cancer patients, we demonstrate that ADTD provides insights into cell-type specific molecular differences between breast cancer subtypes. AVAILABILITY AND IMPLEMENTATION: A python implementation of ADTD and a tutorial are available at Gitlab and zenodo (doi:10.5281/zenodo.7548362).


Assuntos
Aprendizado de Máquina , Humanos , Perfilação da Expressão Gênica/métodos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transcriptoma , Algoritmos , Biologia Computacional/métodos , Feminino
2.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605034

RESUMO

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Assuntos
Sítios de Splice de RNA , Retinose Pigmentar , Spliceossomos , Humanos , Spliceossomos/genética , Spliceossomos/metabolismo , Proteômica , Splicing de RNA/genética , Processamento Alternativo/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA Mensageiro/metabolismo , Mutação , DNA Helicases/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
Front Public Health ; 11: 1289945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074768

RESUMO

The COVID-19 pandemic has exemplified the importance of interoperable and equitable data sharing for global surveillance and to support research. While many challenges could be overcome, at least in some countries, many hurdles within the organizational, scientific, technical and cultural realms still remain to be tackled to be prepared for future threats. We propose to (i) continue supporting global efforts that have proven to be efficient and trustworthy toward addressing challenges in pathogen molecular data sharing; (ii) establish a distributed network of Pathogen Data Platforms to (a) ensure high quality data, metadata standardization and data analysis, (b) perform data brokering on behalf of data providers both for research and surveillance, (c) foster capacity building and continuous improvements, also for pandemic preparedness; (iii) establish an International One Health Pathogens Portal, connecting pathogen data isolated from various sources (human, animal, food, environment), in a truly One Health approach and following FAIR principles. To address these challenging endeavors, we have started an ELIXIR Focus Group where we invite all interested experts to join in a concerted, expert-driven effort toward sustaining and ensuring high-quality data for global surveillance and research.


Assuntos
COVID-19 , Animais , Humanos , COVID-19/epidemiologia , Pandemias , Fortalecimento Institucional , Disseminação de Informação
4.
Sci Adv ; 9(20): eadg0432, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196085

RESUMO

Interfacial tension plays an important role in governing the dynamics of droplet coalescence and determining how condensates interact with and deform lipid membranes and biological filaments. We demonstrate that an interfacial tension-only model is inadequate for describing stress granules in live cells. Harnessing a high-throughput flicker spectroscopy pipeline to analyze the shape fluctuations of tens of thousands of stress granules, we find that the measured fluctuation spectra require an additional contribution, which we attribute to elastic bending deformation. We also show that stress granules have an irregular, nonspherical base shape. These results suggest that stress granules are viscoelastic droplets with a structured interface, rather than simple Newtonian liquids. Furthermore, we observe that the measured interfacial tensions and bending rigidities span a range of several orders of magnitude. Hence, different types of stress granules (and more generally, other biomolecular condensates) can only be differentiated via large-scale surveys.


Assuntos
Citoesqueleto , Grânulos de Estresse
5.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047429

RESUMO

DJ-1 is a redox sensitive protein with a wide range of functions related to oxidative stress protection. Mutations in the park7 gene, which codes for DJ-1 are associated with early onset familial Parkinson's disease and increased astrocytic DJ-1 levels are found in pathologic tissues from idiopathic Parkinson's disease. We have previously established a DJ-1 knockout zebrafish line that developed normally, but with aging the DJ-1 null fish had a lowered level of tyrosine hydroxylase, respiratory mitochondrial failure and a lower body mass. Here we have examined the DJ-1 knockout from the early adult stage and show that loss of DJ-1 results in a progressive, age-dependent increase in both motoric and non-motoric symptoms associated to Parkinson's disease. These changes coincide with changes in mitochondrial and mitochondrial associated proteins. Recent studies have suggested that a decline in NAD+ can contribute to Parkinson's disease and that supplementation of NAD+ precursors may delay disease progression. We found that the brain NAD+/NADH ratio decreased in aging zebrafish but did not correlate with DJ-1 induced altered behavior. Differences were first observed at the late adult stage in which NAD+ and NADPH levels were decreased in DJ-1 knockouts. Considering the experimental power of zebrafish and the development of Parkinson's disease-related symptoms in the DJ-1 null fish, this model can serve as a useful tool both to understand the progression of the disease and the effect of suggested treatments.


Assuntos
Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , NAD/metabolismo , Encéfalo/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo
6.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36971700

RESUMO

Plants respond to environmental stresses through controlled stem cell maintenance and meristem activity. One level of gene regulation is RNA alternative splicing. However, the mechanistic link between stress, meristem function and RNA splicing is poorly understood. The MERISTEM-DEFECTIVE (MDF) Arabidopsis gene encodes an SR-related family protein, required for meristem function and leaf vascularization, and is the likely orthologue of the human SART1 and yeast Snu66 splicing factors. MDF is required for the correct splicing and expression of key transcripts associated with root meristem function. We identified RSZ33 and ACC1, both known to regulate cell patterning, as splicing targets required for MDF function in the meristem. MDF expression is modulated by osmotic and cold stress, associated with differential splicing and specific isoform accumulation and shuttling between nucleus and cytosol, and acts in part via a splicing target SR34. We propose a model in which MDF controls splicing in the root meristem to promote stemness and to repress stress response, cell differentiation and cell death pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Splicing de RNA/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
7.
Adv Mater ; 34(34): e2202913, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35796384

RESUMO

Coacervates droplets have long been considered as potential protocells to mimic living cells. However, these droplets lack a membrane and are prone to coalescence, limiting their ability to survive, interact, and organize into higher-order assemblies. This work shows that tyrosine-rich peptide conjugates can undergo liquid-liquid phase separation in a well-defined pH window and transform into stable membrane-enclosed protocells by enzymatic oxidation and cross-linking at the liquid-liquid interface. The oxidation of the tyrosine-rich peptides into dityrosine creates a semipermeable, flexible membrane around the coacervates with tunable thickness, which displays strong intrinsic fluorescence, and stabilizes the coacervate protocells against coalescence. The membranes have an effective molecular weight cut-off of 2.5 kDa, as determined from the partitioning of small dyes and labeled peptides, RNA, and polymers into the membrane-enclosed coacervate protocells. Flicker spectroscopy reveals a membrane bending rigidity of only 0.1kB T, which is substantially lower than phospholipid bilayers despite a larger membrane thickness. Finally, it is shown that enzymes can be stably encapsulated inside the protocells and be supplied with substrates from outside, which opens the way for these membrane-bound compartments to be used as molecularly crowded artificial cells capable of communication or as a vehicle for drug delivery.


Assuntos
Células Artificiais , Células Artificiais/química , Peptídeos , Polímeros , RNA , Tirosina
8.
Clin Transl Med ; 12(3): e759, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297555

RESUMO

INTRODUCTION: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS: We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS: To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS: Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.


Assuntos
Autofagia , Proteínas do Olho , Células-Tronco Pluripotentes Induzidas , Agregados Proteicos , Retinose Pigmentar , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Ribonucleoproteínas Nucleares Pequenas
9.
Front Cell Dev Biol ; 9: 700276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395430

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal disease characterized by progressive degeneration of photoreceptors and/or retinal pigment epithelium that eventually results in blindness. Mutations in pre-mRNA processing factors (PRPF3, 4, 6, 8, 31, SNRNP200, and RP9) have been linked to 15-20% of autosomal dominant RP (adRP) cases. Current evidence indicates that PRPF mutations cause retinal specific global spliceosome dysregulation, leading to mis-splicing of numerous genes that are involved in a variety of retina-specific functions and/or general biological processes, including phototransduction, retinol metabolism, photoreceptor disk morphogenesis, retinal cell polarity, ciliogenesis, cytoskeleton and tight junction organization, waste disposal, inflammation, and apoptosis. Importantly, additional PRPF functions beyond RNA splicing have been documented recently, suggesting a more complex mechanism underlying PRPF-RPs driven disease pathogenesis. The current review focuses on the key RP-PRPF genes, depicting the current understanding of their roles in RNA splicing, impact of their mutations on retinal cell's transcriptome and phenome, discussed in the context of model species including yeast, zebrafish, and mice. Importantly, information on PRPF functions beyond RNA splicing are discussed, aiming at a holistic investigation of PRPF-RP pathogenesis. Finally, work performed in human patient-specific lab models and developing gene and cell-based replacement therapies for the treatment of PRPF-RPs are thoroughly discussed to allow the reader to get a deeper understanding of the disease mechanisms, which we believe will facilitate the establishment of novel and better therapeutic strategies for PRPF-RP patients.

10.
NAR Genom Bioinform ; 3(2): lqab038, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34056595

RESUMO

The rate of translation can vary depending on the mRNA template. During the elongation phase the ribosome can transiently pause or permanently stall. A pause can provide the nascent protein with the time to fold or be transported, while stalling can serve as quality control and trigger degradation of aberrant mRNA and peptide. Ribosome profiling has allowed for the genome-wide detection of such pauses and stalls, but due to library-specific biases, these predictions are often unreliable. Here, we take advantage of the deep conservation of protein synthesis machinery, hypothesizing that similar conservation could exist for functionally important locations of ribosome slowdown, here collectively called stall sites. We analyze multiple ribosome profiling datasets from phylogenetically diverse eukaryotes: yeast, fruit fly, zebrafish, mouse and human to identify conserved stall sites. We find thousands of stall sites across multiple species, with the enrichment of proline, glycine and negatively charged amino acids around conserved stalling. Many of the sites are found in RNA processing genes, suggesting that stalling might have a conserved role in RNA metabolism. In summary, our results provide a rich resource for the study of conserved stalling and indicate possible roles of stalling in gene regulation.

11.
EMBO J ; 40(9): e106048, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33764576

RESUMO

Cellular senescence is characterized by an irreversible cell cycle arrest as well as a pro-inflammatory phenotype, thought to contribute to aging and age-related diseases. Neutrophils have essential roles in inflammatory responses; however, in certain contexts their abundance is associated with a number of age-related diseases, including liver disease. The relationship between neutrophils and cellular senescence is not well understood. Here, we show that telomeres in non-immune cells are highly susceptible to oxidative damage caused by neighboring neutrophils. Neutrophils cause telomere dysfunction both in vitro and ex vivo in a ROS-dependent manner. In a mouse model of acute liver injury, depletion of neutrophils reduces telomere dysfunction and senescence. Finally, we show that senescent cells mediate the recruitment of neutrophils to the aged liver and propose that this may be a mechanism by which senescence spreads to surrounding cells. Our results suggest that interventions that counteract neutrophil-induced senescence may be beneficial during aging and age-related disease.


Assuntos
Lesão Pulmonar Aguda/imunologia , Tetracloreto de Carbono/efeitos adversos , Neutrófilos/citologia , Espécies Reativas de Oxigênio/metabolismo , Encurtamento do Telômero , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Linhagem Celular , Senescência Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Neutrófilos/metabolismo , Estresse Oxidativo , Comunicação Parácrina
12.
Nat Cell Biol ; 22(7): 856-867, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32601372

RESUMO

The ESCRT-III membrane fission machinery maintains the integrity of the nuclear envelope. Although primary nuclei resealing takes minutes, micronuclear envelope ruptures seem to be irreversible. Instead, micronuclear ruptures result in catastrophic membrane collapse and are associated with chromosome fragmentation and chromothripsis, complex chromosome rearrangements thought to be a major driving force in cancer development. Here we use a combination of live microscopy and electron tomography, as well as computer simulations, to uncover the mechanism underlying micronuclear collapse. We show that, due to their small size, micronuclei inherently lack the capacity of primary nuclei to restrict the accumulation of CHMP7-LEMD2, a compartmentalization sensor that detects loss of nuclear integrity. This causes unrestrained ESCRT-III accumulation, which drives extensive membrane deformation, DNA damage and chromosome fragmentation. Thus, the nuclear-integrity surveillance machinery is a double-edged sword, as its sensitivity ensures rapid repair at primary nuclei while causing unrestrained activity at ruptured micronuclei, with catastrophic consequences for genome stability.


Assuntos
Núcleo Celular/patologia , Cromatina/metabolismo , Aberrações Cromossômicas , Dano ao DNA , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Instabilidade Genômica , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HeLa , Humanos
13.
Development ; 146(2)2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696714

RESUMO

The scarcity of embryonic/foetal material as a resource for direct study means that there is still limited understanding of human retina development. Here, we present an integrated transcriptome analysis combined with immunohistochemistry in human eye and retinal samples from 4 to 19 post-conception weeks. This analysis reveals three developmental windows with specific gene expression patterns that informed the sequential emergence of retinal cell types and enabled identification of stage-specific cellular and biological processes, and transcriptional regulators. Each stage is characterised by a specific set of alternatively spliced transcripts that code for proteins involved in the formation of the photoreceptor connecting cilium, pre-mRNA splicing and epigenetic modifiers. Importantly, our data show that the transition from foetal to adult retina is characterised by a large increase in the percentage of mutually exclusive exons that code for proteins involved in photoreceptor maintenance. The circular RNA population is also defined and shown to increase during retinal development. Collectively, these data increase our understanding of human retinal development and the pre-mRNA splicing process, and help to identify new candidate disease genes.


Assuntos
Perfilação da Expressão Gênica , Retina/embriologia , Retina/metabolismo , Processamento Alternativo/genética , Animais , Biomarcadores/metabolismo , Cílios/metabolismo , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Células Fotorreceptoras de Vertebrados/citologia , Células Fotorreceptoras de Vertebrados/metabolismo , Análise de Componente Principal , RNA/genética , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Circular , Retina/citologia , Retina/ultraestrutura , Transcriptoma/genética
14.
Elife ; 82019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674417

RESUMO

Male germ cells of all placental mammals express an ancient nuclear RNA binding protein of unknown function called RBMXL2. Here we find that deletion of the retrogene encoding RBMXL2 blocks spermatogenesis. Transcriptome analyses of age-matched deletion mice show that RBMXL2 controls splicing patterns during meiosis. In particular, RBMXL2 represses the selection of aberrant splice sites and the insertion of cryptic and premature terminal exons. Our data suggest a Rbmxl2 retrogene has been conserved across mammals as part of a splicing control mechanism that is fundamentally important to germ cell biology. We propose that this mechanism is essential to meiosis because it buffers the high ambient concentrations of splicing activators, thereby preventing poisoning of key transcripts and disruption to gene expression by aberrant splice site selection.


Assuntos
Células Germinativas/metabolismo , Sítios de Splice de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Éxons/genética , Fertilidade , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose/genética , Metáfase/genética , Camundongos Endogâmicos C57BL , Modelos Animais , Especificidade de Órgãos , Splicing de RNA/genética , Testículo/metabolismo
15.
Aging Cell ; 18(1): e12848, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30462359

RESUMO

Senescent cells accumulate with age in multiple tissues and may cause age-associated disease and functional decline. In vitro, senescent cells induce senescence in bystander cells. To see how important this bystander effect may be for accumulation of senescent cells in vivo, we xenotransplanted senescent cells into skeletal muscle and skin of immunocompromised NSG mice. 3 weeks after the last transplantation, mouse dermal fibroblasts and myofibres displayed multiple senescence markers in the vicinity of transplanted senescent cells, but not where non-senescent or no cells were injected. Adjacent to injected senescent cells, the magnitude of the bystander effect was similar to the increase in senescence markers in myofibres between 8 and 32 months of age. The age-associated increase of senescence markers in muscle correlated with fibre thinning, a widely used marker of muscle aging and sarcopenia. Senescent cell transplantation resulted in borderline induction of centrally nucleated fibres and no significant thinning, suggesting that myofibre aging might be a delayed consequence of senescence-like signalling. To assess the relative importance of the bystander effect versus cell-autonomous senescence, we compared senescent hepatocyte frequencies in livers of wild-type and NSG mice under ad libitum and dietary restricted feeding. This enabled us to approximate cell-autonomous and bystander-driven senescent cell accumulation as well as the impact of immunosurveillance separately. The results suggest a significant impact of the bystander effect for accumulation of senescent hepatocytes in liver and indicate that senostatic interventions like dietary restriction may act as senolytics in immunocompetent animals.


Assuntos
Efeito Espectador , Senescência Celular , Animais , Biomarcadores , Derme/citologia , Fibroblastos/citologia , Humanos , Fígado/citologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Fenótipo , Transplante Heterólogo
16.
Nat Commun ; 9(1): 4234, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315276

RESUMO

Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/- mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/- mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.


Assuntos
Proteínas do Olho/metabolismo , Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Cílios/genética , Cílios/metabolismo , Cílios/fisiologia , Proteínas do Olho/genética , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mutação/genética , Organoides/citologia , Organoides/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia , Retina/citologia , Retina/metabolismo , Retinose Pigmentar/genética
17.
Nat Commun ; 8: 15691, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608850

RESUMO

The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular senescence refers to a state of irreversible cell-cycle arrest combined with the secretion of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to age-related tissue degeneration. Here we show that the accumulation of senescent cells promotes hepatic fat accumulation and steatosis. We report a close correlation between hepatic fat accumulation and markers of hepatocyte senescence. The elimination of senescent cells by suicide gene-meditated ablation of p16Ink4a-expressing senescent cells in INK-ATTAC mice or by treatment with a combination of the senolytic drugs dasatinib and quercetin (D+Q) reduces overall hepatic steatosis. Conversely, inducing hepatocyte senescence promotes fat accumulation in vitro and in vivo. Mechanistically, we show that mitochondria in senescent cells lose the ability to metabolize fatty acids efficiently. Our study demonstrates that cellular senescence drives hepatic steatosis and elimination of senescent cells may be a novel therapeutic strategy to reduce steatosis.


Assuntos
Senescência Celular/efeitos dos fármacos , Dasatinibe/química , Fígado Gorduroso/patologia , Inflamação , Quercetina/química , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fígado Gorduroso/metabolismo , Fibroblastos/metabolismo , Hepatócitos/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
18.
Nat Commun ; 7: 10355, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758068

RESUMO

Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Dimerização , Células HEK293 , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Motivos de Nucleotídeos , Estrutura Terciária de Proteína , RNA/metabolismo , Relação Estrutura-Atividade
19.
J Biomol Struct Dyn ; 34(9): 1979-86, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26414300

RESUMO

The Transformer2 (Tra2) proteins in humans are homologues of the Drosophila Tra2 protein. One of the two RNA-binding paralogs, Tra2ß, has been very well-studied over the past decade, but not much is known about Tra2α. It was very recently shown that the two proteins demonstrate the phenomenon of paralog compensation. Here, we provide a structural basis for this genetic backup circuit, using molecular modelling and dynamics studies. We show that the two proteins display similar binding specificities, but differential affinities to a short GAA-rich RNA stretch. Starting from the 6-nucleotide RNA in the solution structure, close to 4000 virtual mutations were modelled on RNA and the domain-RNA interactions were studied after energy minimisation to convergence. Separately, another known 13-nucleotide stretch was docked and the domain-RNA interactions were observed through a 100-ns dynamics trajectory. We have also demonstrated the 'compensatory' mechanism at the level of domains in one of the domain repeat-containing RNA-binding proteins.


Assuntos
Proteína Cofatora de Membrana/química , Modelos Moleculares , Proteínas de Ligação a RNA/química , RNA/química , Sequência de Aminoácidos , Humanos , Ligantes , Proteína Cofatora de Membrana/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade
20.
Dev Cell ; 32(5): 617-30, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25727005

RESUMO

The tuberous sclerosis proteins TSC1 and TSC2 are key integrators of growth factor signaling. They suppress cell growth and proliferation by acting in a heteromeric complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1). In this study, we identify TSC1 as a component of the transforming growth factor ß (TGF-ß)-Smad2/3 pathway. Here, TSC1 functions independently of TSC2. TSC1 interacts with the TGF-ß receptor complex and Smad2/3 and is required for their association with one another. TSC1 regulates TGF-ß-induced Smad2/3 phosphorylation and target gene expression and controls TGF-ß-induced growth arrest and epithelial-to-mesenchymal transition (EMT). Hyperactive Akt specifically activates TSC1-dependent cytostatic Smad signaling to induce growth arrest. Thus, TSC1 couples Akt activity to TGF-ß-Smad2/3 signaling. This has implications for cancer treatments targeting phosphoinositide 3-kinases and Akt because they may impair tumor-suppressive cytostatic TGF-ß signaling by inhibiting Akt- and TSC1-dependent Smad activation.


Assuntos
Apoptose , Proliferação de Células , Transição Epitelial-Mesenquimal , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Western Blotting , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...