Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13915, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886543

RESUMO

The potato cyst nematode Globodera rostochiensis originates from the Andean Mountain region in South America and has unintentionally been introduced to all inhabited continents. Several studies have examined the population genetic structure of this pest in various countries by using microsatellite markers. However, merging microsatellite data produced from different laboratories is challenging and can introduce uncertainty when interpreting the results. To overcome this challenge and to explore invasion routes of this pest, we have genotyped 22 G. rostochiensis populations from all continents. Within populations, the highest genetic diversity was observed in the South American populations, the European populations showed an intermediate level of genetic diversity and the remaining populations were the less diverse. This confirmed pre-existing knowledge such as a first introduction event from South America to Europe, but the less diverse populations could originate either from South America or from Europe. At the continental scale, STRUCTURE genetic clustering output indicated that North America and Asia have experienced at least two introduction events. Comparing different evolutionary scenarios, the Approximate Bayesian Computation analysis showed that Europe served as a secondary distribution centre for the invasion of G. rostochiensis into all other continents (North America, Africa, Asia and Oceania).


Assuntos
Variação Genética , Repetições de Microssatélites , Solanum tuberosum , Tylenchoidea , Animais , Europa (Continente) , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Espécies Introduzidas , Teorema de Bayes , Genótipo , Doenças das Plantas/parasitologia , Genética Populacional , América do Sul
2.
Am Nat ; 202(4): E104-E120, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792913

RESUMO

AbstractMany animals lay their eggs in clusters. Eggs on the periphery of clusters can be at higher risk of mortality. We asked whether the most commonly occurring clutch sizes in pentatomid bugs could result from geometrical arrangements that maximize the proportion of eggs in the cluster's interior. Although the most common clutch sizes do not correspond with geometric optimality, stink bugs do tend to lay clusters of eggs in shapes that protect increasing proportions of their offspring as clutch sizes increase. We also considered whether ovariole number, an aspect of reproductive anatomy that may be a fixed trait across many pentatomids, could explain observed distributions of clutch sizes. The most common clutch sizes across many species correspond with multiples of ovariole number. However, there are species with the same number of ovarioles that lay clutches of widely varying size, among which multiples of ovariole number are not overrepresented. In pentatomid bugs, reproductive anatomy appears to be more important than egg mass geometry in determining clutch size uniformity. In addition, our analysis demonstrates that groups of animals with little variation in ovariole number may nonetheless lay a broad range of clutch shapes and sizes.


Assuntos
Tamanho da Ninhada , Animais , Fenótipo
3.
Nat Commun ; 13(1): 6190, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261416

RESUMO

Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages. Analysis of the hologenome of the plant-nematode infection site identified metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that a highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is required for full pathogenicity. Knockout of either plant-encoded or now nematode-encoded steps in the pathway significantly reduces parasitic success. Our experiments establish a reference for cyst nematodes, further our understanding of the evolution of plant-parasitism by nematodes, and show that congruent differential expression of metabolic pathways in the infection hologenome represents a new way to find nematode susceptibility genes. The approach identifies genome-editing-amenable targets for future development of nematode-resistant crops.


Assuntos
Cistos , Parasitos , Tylenchida , Animais , Ácido Pantotênico , Transcriptoma
4.
PLoS One ; 17(3): e0265070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35259205

RESUMO

Plant parasitic nematodes are highly abundant in all agrosystems and some species can have a major impact on crop yields. To avoid the use of chemical agents and to find alternative methods to manage these pests, research studies have mainly focused on plant resistance genes and biocontrol methods involving host plants or natural enemies. A specific alternative method may consist in supporting non-damaging indigenous species that could compete with damaging introduced species to decrease and keep their abundance at low level. For this purpose, knowledge about the biodiversity, structure and functioning of these indigenous communities is needed in order to carry out better risk assessments and to develop possible future management strategies. Here, we investigated 35 root crop fields in eight regions over two consecutive years. The aims were to describe plant parasitic nematode diversity and to assess the potential effects of cultivation practices and environmental variables on communities. Community biodiversity included 10 taxa of plant parasitic nematodes. Despite no significant abundance variations between the two sampling years, structures of communities varied among the different regions. Metadata collected for the past six years, characterizing the cultural practices and soils properties, made it possible to evaluate the impact of these variables both on the whole community and on each taxon separately. Our results suggest that, at a large scale, many variables drive the structuration of the communities. Soil variables, but also rainfall, explain the population density variations among the geographical areas. The effect of the variables differed among the taxa, but fields with few herbicide applications and being pH neutral with low heavy metal and nitrogen concentrations had the highest plant parasitic nematode densities. We discuss how these variables can affect nematode communities either directly or indirectly. These types of studies can help to better understand the variables driving the nematode communities structuration in order to support the abundance of indigenous non-damaging communities that could compete with the invasive species.


Assuntos
Nematoides , Parasitos , Tylenchida , Animais , Biodiversidade , Plantas , Solo/parasitologia
5.
Mil Med ; 187(3-4): e282-e289, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33242087

RESUMO

INTRODUCTION: Musculoskeletal injuries are an endemic amongst U.S. Military Service Members and significantly strain the Department of Defense's Military Health System. The Military Health System aims to provide Service Members, military retirees, and their families the right care at the right time. The Military Orthopedics Tracking Injuries and Outcomes Network (MOTION) captures the data that can optimize musculoskeletal care within the Military Health System. This report provides MOTION structural framework and highlights how it can be used to optimize musculoskeletal care. MATERIALS AND METHODS: MOTION established an internet-based data capture system, the MOTION Musculoskeletal Data Portal. All adult Military Health System patients who undergo orthopedic surgery are eligible for entry into the database. All data are collected as routine standard of care, with patients and orthopedic surgeons inputting validated global and condition-specific patient reported outcomes and operative case data, respectively. Patients have the option to consent to allow their standard of care data to be utilized within an institutional review board approved observational research study. MOTION data can be merged with other existing data systems (e.g., electronic medical record) to develop a comprehensive dataset of relevant information. In pursuit of enhancing musculoskeletal injury patient outcomes MOTION aims to: (1) identify factors which predict favorable outcomes; (2) develop models which inform the surgeon and military commanders if patients are behind, on, or ahead of schedule for their targeted return-to-duty/activity; and (3) develop predictive models to better inform patients and surgeons of the likelihood of a positive outcome for various treatment options to enhance patient counseling and expectation management. RESULTS: This is a protocol article describing the intent and methodology for MOTION; thus, to date, there are no results to report. CONCLUSIONS: MOTION was established to capture the data that are necessary to improve military medical readiness and optimize medical resource utilization through the systematic evaluation of short- and long-term musculoskeletal injury patient outcomes. The systematic enhancement of musculoskeletal injury care through data analyses aligns with the National Defense Authorization Act (2017) and Defense Health Agency's Quadruple Aim, which emphasizes optimizing healthcare delivery and Service Member medical readiness. This transformative approach to musculoskeletal care can be applied across disciplines within the Military Health System.


Assuntos
Serviços de Saúde Militar , Militares , Doenças Musculoesqueléticas , Sistema Musculoesquelético , Ortopedia , Adulto , Humanos , Doenças Musculoesqueléticas/epidemiologia , Doenças Musculoesqueléticas/terapia , Sistema Musculoesquelético/lesões
6.
Am J Sports Med ; 49(13): 3561-3568, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34612705

RESUMO

BACKGROUND: Patient-reported outcomes (PROs) measure progression and quality of care. While legacy PROs such as the International Knee Documentation Committee (IKDC) survey are well-validated, a lengthy PRO creates a time burden on patients, decreasing adherence. In recent years, PROs such as the Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function and Pain Interference surveys were developed as computer adaptive tests, reducing time to completion. Previous studies have examined correlation between legacy PROs and PROMIS; however, no studies have developed effective prediction models utilizing PROMIS to create an IKDC index. While the IKDC is the standard knee PRO, computer adaptive PROs offer numerous practical advantages. PURPOSE: To develop a nonlinear predictive model utilizing PROMIS Physical Function and Pain Interference to estimate IKDC survey scores and examine algorithm sensitivity and validity. STUDY DESIGN: Cohort study (diagnosis); Level of evidence, 3. METHODS: The MOTION (Military Orthopaedics Tracking Injuries and Outcomes Network) database is a prospectively collected repository of PROs and intraoperative variables. Patients undergoing knee surgery completed the IKDC and PROMIS surveys at varying time points. Nonlinear multivariable predictive models using Gaussian and beta distributions were created to establish an IKDC index score, which was then validated using leave-one-out techniques and minimal clinically important difference analysis. RESULTS: A total of 1011 patients completed the IKDC and PROMIS Physical Function and Pain Interference, providing 1618 complete observations. The algorithms for the Gaussian and beta distribution were validated to predict the IKDC (Pearson = 0.84-0.86; R2 = 0.71-0.74; root mean square error = 9.3-10.0). CONCLUSION: The publicly available predictive models can approximate the IKDC score. The results can be used to compare PROMIS Physical Function and Pain Interference against historical IKDC scores by creating an IKDC index score. Serial use of the IKDC index allows for a lower minimal clinically important difference than the conventional IKDC. PROMIS can be substituted to reduce patient burden, increase completion rates, and produce orthopaedic-specific survey analogs.


Assuntos
Traumatismos do Joelho , Estudos de Coortes , Documentação , Humanos , Joelho , Traumatismos do Joelho/cirurgia , Medidas de Resultados Relatados pelo Paciente
7.
J Insect Physiol ; 133: 104273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34181983

RESUMO

Solar ultraviolet radiation (UV) can have a wide range of negative effects on animal fitness that take place not only during, but also after exposure (carryover effects). UV-induced carryover effects and potential adaptations to avoid or mitigate them are understudied in terrestrial animals, including arthropods and their potentially most vulnerable life stages. The spined soldier bug, Podisus maculiventris, increases the emergence of its eggs that are exposed to UV radiation by coating them in sunscreen-like pigmentation, but consequences of these conditions of embryonic development for nymphs and adults are unknown. We measured stink bug nymph survival, adult size and sex ratio following exposure of differently pigmented eggs across a range of UV intensities. Nymph survival to adulthood decreased with higher intensity of embryonic UV exposure and this carryover effect decreased with higher level of egg pigmentation, similar to previously observed effects on embryonic survival. Nymph development time, adult size and sex ratio were not affected by embryonic exposure to UV radiation nor by photoprotective egg pigmentation. This study is the first to demonstrate the potential for lethal carryover effects of UV radiation in terrestrial insects, highlighting the need for more studies of how this pervasive environmental stressor can affect fitness across life stages.


Assuntos
Heterópteros/efeitos da radiação , Pigmentação/fisiologia , Pigmentos Biológicos/fisiologia , Raios Ultravioleta/efeitos adversos , Animais , Heterópteros/crescimento & desenvolvimento , Longevidade , Ninfa/crescimento & desenvolvimento , Ninfa/efeitos da radiação , Óvulo/fisiologia , Óvulo/efeitos da radiação
8.
Phytopathology ; 111(1): 40-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33151824

RESUMO

Plant-parasitic nematodes are a costly burden of crop production. Ubiquitous in nature, phytoparasitic nematodes are associated with nearly every important agricultural crop and represent a significant constraint on global food security. Population genetics is a key discipline in plant nematology to understand aspects of the life strategies of these parasites, in particular their modes of reproduction, geographic origins, evolutionary histories, and dispersion abilities. Advances in high-throughput sequencing technologies have enabled a recent but active effort in genomic analyses of plant-parasitic nematodes. Such genomic approaches applied to multiple populations are providing new insights into the molecular and evolutionary processes that underpin the establishment of these nematodes and into a better understanding of the genetic and mechanistic basis of their pathogenicity and adaptation to their host plants. In this review, we attempt to update information about genome resources and genotyping techniques useful for nematologists who are thinking about initiating population genomics or genome sequencing projects. This review is intended also to foster the development of population genomics in plant-parasitic nematodes through highlighting recent publications that illustrate the potential for this approach to identify novel molecular markers or genes of interest and improve our knowledge of the genome variability, pathogenicity, and evolutionary potential of plant-parasitic nematodes.


Assuntos
Nematoides , Parasitos , Animais , Metagenômica , Nematoides/genética , Doenças das Plantas , Plantas
9.
Ecol Evol ; 10(9): 4156-4163, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32489638

RESUMO

Plant-parasite coevolution has generated much interest and studies to understand and manage diseases in agriculture. Such a reciprocal evolutionary process could lead to a pattern of local adaptation between plants and parasites. Based on the phylogeography of each partner, the present study tested the hypothesis of local adaptation between the potato cyst nematode Globodera pallida and wild potatoes in Peru. The measured fitness trait was the hatching of cysts which is induced by host root exudates. Using a cross-hatching assay between 13 populations of G. pallida and root exudates from 12 wild potatoes, our results did not show a strong pattern of local adaptation of the parasite but the sympatric combinations induced better hatching of cysts than allopatric combinations, and there was a negative relationship between the hatching percentage and the geographical distance between nematode populations and wild potatoes. Moreover, a strong effect of the geographic origin of root exudates was found, with root exudates from south of Peru inducing better hatching than root exudates from north of Peru. These results could be useful to develop new biocontrol products or potato cultivars to limit damages caused by G. pallida.

10.
Evol Appl ; 13(4): 727-737, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32211063

RESUMO

Our knowledge of the diversity of potato cyst nematodes in their native areas still remains patchy and should be improved. A previous study based on 42 Peruvian Globodera pallida populations revealed a clear south to north phylogeographic pattern, with five well-supported clades and maximum diversity observed in the south of Peru. In order to investigate this phylogeographic pattern more closely, we genotyped a larger collection of Peruvian populations using both cathepsin L gene sequence data and a new set of 13 microsatellite loci. Using different genetic analyses (STRUCTURE, DAPC), we consistently obtained the same results that led to similar conclusions: the presence of a larger genetic diversity than previously known suggesting the presence of cryptic species in the south of Peru. These investigations also allowed us to clarify the geographic borders of the previously described G. pallida genetic clades and to update our knowledge of the genetic structure of this species in its native area, with the presence of additional clades. A distance-based redundancy analysis (dbRDA) was also carried to understand whether there was a correlation between the population genetic differentiation and environmental conditions. This analysis showed that genetic distances observed between G. pallida populations are explained firstly by geographic distances, but also by climatic and soil conditions. This work could lead to a revision of the taxonomy that may have strong implications for risk assessment and management, especially on a quarantine species.

11.
BMC Genomics ; 20(1): 457, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170914

RESUMO

BACKGROUND: In hyperspecialized parasites, the ability to grow on a particular host relies on specific virulence factors called effectors. These excreted proteins are involved in the molecular mechanisms of parasitism and distinguish virulent pathogens from non-virulent related species. The potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida are major plant-parasitic nematodes developing on numerous solanaceous species including potato. Their close relatives, G. tabacum and G. mexicana are stimulated by potato root diffusate but unable to establish a feeding site on this plant host. RESULTS: RNA sequencing was used to characterize transcriptomic differences among these four Globodera species and to identify genes associated with host specificity. We identified seven transcripts that were unique to PCN species, including a protein involved in ubiquitination. We also found 545 genes that were differentially expressed between PCN and non-PCN species, including 78 genes coding for effector proteins, which represent more than a 6-fold enrichment compared to the whole transcriptome. Gene polymorphism analysis identified 359 homozygous non-synonymous variants showing a strong evidence for selection in PCN species. CONCLUSIONS: Overall, we demonstrated that the determinant of host specificity resides in the regulation of essential effector gene expression that could be under the control of a single or of very few regulatory genes. Such genes are therefore promising targets for the development of novel and more sustainable resistances against potato cyst nematodes.


Assuntos
Solanum tuberosum/parasitologia , Tylenchoidea/genética , Animais , Perfilação da Expressão Gênica , Variação Genética , Especificidade de Hospedeiro/genética , Reação em Cadeia da Polimerase , Análise de Sequência de RNA , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidade
12.
Proc Biol Sci ; 286(1894): 20182359, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30963865

RESUMO

The effective size of a population is the size of an ideal population which would undergo genetic drift at the same rate as the real population. The balance between selection and genetic drift depends on the effective population size ( Ne), rather than the real numbers of individuals in the population ( N). The objectives of the present study were to estimate Ne in the potato cyst nematode Globodera pallida and to explore the causes of a low Ne/ N ratio in cyst nematodes using artificial populations. Using a temporal analysis of 24 independent populations, the median Ne was 58 individuals (min Ne = 25 and max Ne = 228). Ne is commonly lower than N but in the case of cyst nematodes, the Ne/ N ratio was extremely low. Using artificial populations showed that this low ratio did not result from migration, selection and overlapping generations, but could be explain by the fact that G. pallida populations deviate in structure from the assumptions of the ideal population by having unequal sex ratios, high levels of inbreeding and a high variance in family sizes. The consequences of a low Ne, resulting in a strong intensity of genetic drift, could be important for their control because G. pallida populations will have a low capacity to adapt to changing environments.


Assuntos
Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Animais , Densidade Demográfica
13.
Infect Genet Evol ; 73: 81-92, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31003010

RESUMO

The cyst nematode Heterodera carotae, which parasitizes carrot roots, has been recorded in many countries in Europe (Italy, The Netherlands, Switzerland, France, Denmark, …), in South Africa and in North America (Canada, USA). To date, there is a lack of knowledge about the genetic structure of the populations of this economically important nematode. The aim of this work was to study the structuration of the genetic diversity of the carrot cyst nematode at the European scale. We have developed a set of thirteen polymorphic microsatellite markers and used it to genotype seventeen European populations of H. carotae coming from France, Switzerland, Italy, Denmark and one non-European population from Canada. As previously showed for other cyst nematode species, the H. carotae populations were characterised by a strong heterozygote deficit. A Bayesian clustering analysis revealed two distinct genetic clusters, with one group located in the north of Europe and a second one located in the south of Europe. Moreover, our results highlighted rather limited gene flow at small spatial scale and some events of long distance migration. This first investigation of the genetic diversity of H. carotae populations would be useful to develop sustainable control strategies.


Assuntos
Genética Populacional , Repetições de Microssatélites , Tylenchoidea/classificação , Tylenchoidea/genética , Animais , Análise por Conglomerados , Daucus carota/parasitologia , Europa (Continente) , Genes de Protozoários , Variação Genética , Filogenia , Filogeografia
14.
Front Microbiol ; 9: 2801, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519223

RESUMO

It is widely accepted that climate has an essential influence on the distribution of species and that temperature is the major abiotic factor that affects their life-history traits. Species with very restricted active dispersal abilities and a wide geographical distribution are thus expected to encompass distinct populations adapted to contrasted local conditions. The beet cyst nematode Heterodera schachtii is a good biological model to study temperature adaptation in populations collected from different environments. Here, we tested the effect of temperature on H. schachtii life-history traits using seven field populations from Morocco, Spain, France, Germany, Austria, Poland and Ukraine. We tested hatching and multiplication rates of each population at different temperatures, as well as hatching rates of each population after storage at different temperatures - simulating survival conditions during the inter-cropping period. Results showed a strong temperature effect on the life-history traits explored. Temperature impact on hatching (at different temperatures and after storage at different temperatures) depended on the origin of populations, separating southern from northern ones. Surprisingly, low temperatures influenced hatching less in southern populations. However, for these populations, a storage period at low temperatures strongly reduce subsequent hatching. Conversely, nematode multiplication was not differentially affected by temperatures, as favorable conditions for the host are also favorable for the parasite. Finally, a significant correlation between the genetic diversity and the level of specialization showed that the less diverse populations were more specialized than the more diverse ones.

15.
J Surg Orthop Adv ; 26(3): 143-147, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130874

RESUMO

Routine postoperative radiographs are commonly obtained at the initial postoperative visit. The purpose of this study was to demonstrate the clinical utility of routine postoperative radiographs and quantify the radiation exposure and cost to the health care system. All orthopaedic surgeries performed during 2007 at a level I trauma center were retrospectively analyzed. Surgical procedures that were likely to require follow-up radiographs were included. Analysis demonstrated 878 procedures with 471 procedures (54%) receiving initial postoperative radiographs. Routine radiographs were performed in 455 (96.6%) procedures with 4/455 (0.879%) resulting in a change in management. Nonroutine radiographs were performed in 16 (3.40%) procedures with 2/16 (12.5%) triggering a change in management. Subjects receiving radiographs at the initial postoperative visit obtained a mean of 2.54 radiographs per procedure with a mean exposure of 0.199 mSv with a median cost of $29.98 per radiographic series in 2013 Medicare reimbursement dollars. (Journal of Surgical Orthopaedic Advances.


Assuntos
Assistência Ambulatorial , Tomada de Decisão Clínica , Diagnóstico por Imagem/estatística & dados numéricos , Cuidados Pós-Operatórios , Diagnóstico por Imagem/economia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Ortopédicos , Doses de Radiação , Estudos Retrospectivos
16.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286965

RESUMO

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Assuntos
Genoma de Protozoário , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Transferência Genética Horizontal , Ilhas Genômicas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Sítios de Splice de RNA , Splicing de RNA , Transcriptoma , Tylenchoidea/crescimento & desenvolvimento , Virulência/genética
17.
R Soc Open Sci ; 3(4): 150711, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152215

RESUMO

Behavioural plasticity can drive the evolution of new traits in animals. In oviparous species, plasticity in oviposition behaviour could promote the evolution of new egg traits by exposing them to different selective pressures in novel oviposition sites. Individual females of the predatory stink bug Podisus maculiventris are able to selectively colour their eggs depending on leaf side, laying lightly pigmented eggs on leaf undersides and more pigmented eggs, which are more resistant to ultraviolet (UV) radiation damage, on leaf tops. Here, we propose an evolutionary scenario for P. maculiventris egg pigmentation and its selective application. We experimentally tested the influence of several ecological factors that: (i) could have favoured a behavioural shift towards laying eggs on leaf tops and thus the evolution of a UV-protective egg pigment (i.e. exploitation of enemy-reduced space or a thermoregulatory benefit) and (ii) could have subsequently led to the evolution of selective pigment application (i.e. camouflage or costly pigment production). We found evidence that a higher predation pressure on leaf undersides could have caused a shift in oviposition effort towards leaf tops. We also found the first evidence of an insect egg pigment providing a thermoregulatory advantage. Our study contributes to an understanding of how plasticity in oviposition behaviour could shape the responses of organisms to ecological factors affecting their reproductive success, spurring the evolution of new morphological traits.

18.
Curr Biol ; 25(15): 2007-11, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26212882

RESUMO

The color and patterning of animal eggs has important consequences for offspring survival. There are examples of between-species and polymorphic differences in egg coloration in birds and amphibians [1-3], as well as cases of birds and insects whose nutritional status or age can cause within-individual variation in egg pigmentation [4-6]. However, no studies to date have demonstrated that individual animals can selectively control the color of their eggs. Here, we show that individual females of the predatory stink bug Podisus maculiventris can control the pigmentation of their eggs during oviposition, as a response to environmental conditions. The color of egg masses produced by individual females can range from pale yellow to dark black/brown. Females tend to lay darker eggs, which are more resistant to UV radiation, on the upper surface of leaves where UV exposure is highest in nature. Conversely, they lay lighter eggs on the undersides of leaves. However, egg color is not determined by the intensity of UV radiation falling on the surface where they are laid. Rather, female stink bugs appear to use a visual assessment of oviposition substrate reflectance to determine egg color. Unexpectedly, biochemical analyses revealed that the egg pigment is not melanin, the most ubiquitous light-absorbing pigment in animals. Our study offers the first example of an animal able to selectively control the color of its eggs.


Assuntos
Heterópteros/fisiologia , Oviposição , Óvulo/fisiologia , Pigmentação , Animais , Cor , Meio Ambiente , Feminino , Folhas de Planta/fisiologia , Percepção Visual
19.
Mol Ecol ; 24(8): 1654-77, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25735762

RESUMO

Deviations of genotypic frequencies from Hardy-Weinberg equilibrium (HWE) expectations could reveal important aspects of the biology of populations. Deviations from HWE due to heterozygote deficits have been recorded for three plant-parasitic nematode species. However, it has never been determined whether the observed deficits were due (i) to the presence of null alleles, (ii) to a high level of consanguinity and/or (iii) to a Wahlund effect. The aim of the present work was, while taking into the possible confounding effect of null alleles, to disentangle consanguinity and Wahlund effect in natural populations of those three economically important cyst nematodes using microsatellite markers: Globodera pallida, G. tabacum and Heterodera schachtii, pests of potato, tobacco and sugar beet, respectively. The results show a consistent pattern of heterozygote deficiency in the three nematode species sampled at the spatial scale of the host plant. We demonstrate that the prevalence of null alleles is weak and that heterozygote deficits do not have a single origin. Our results suggested that it is restricted dispersal that leads to heterozygote deficits through both consanguinity and substructure, which effects can be linked to soil movement, cyst density, and the number of generations per year. We discuss potential implications for the durability of plant resistances that are used to protect crops against parasites in which mating between relatives occur. While consanguineous mating leads to homozygosity at all loci, including loci governing avirulence/virulence, which favours the expression of virulence when recessive, the Wahlund effect is expected to have no particular effect on the adaptation of nematodes to resistances.


Assuntos
Variação Genética , Heterozigoto , Tylenchoidea/genética , Alelos , Animais , Beta vulgaris/parasitologia , Frequência do Gene , Genética Populacional , Genótipo , Endogamia , Funções Verossimilhança , Repetições de Microssatélites , Solanum tuberosum/parasitologia , Nicotiana/parasitologia
20.
Infect Genet Evol ; 27: 309-17, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25086343

RESUMO

The dispersal abilities and the population genetic structure of nematodes living in soils are poorly known. In the present study, we have pursued these issues in the tobacco cyst nematode, Globodera tabacum, which is responsible of significant yield reductions. Nine microsatellites markers were used to explore the dispersal and genetic structure of 18 French G. tabacum populations. All the populations sampled belong to the "tabacum" subspecies and low level of gene flow was observed among G. tabacum populations in France. Bayesian genetic assignments revealed two distinct genetic groups that matched with the geographic limits of two agricultural cooperative societies. An important part of the genetic variability was observed between these agricultural cooperative societies and also within populations. Those results highlight the impact of the human organization of agricultural practices on the genetic structure of G. tabacum populations and complement previous results obtained on other cyst nematodes, showing the major contribution of human activities and soil transports during harvest in the passive dispersion of these organisms.


Assuntos
Genética Populacional , Atividades Humanas , Tylenchoidea/genética , Agricultura , Animais , Teorema de Bayes , Análise por Conglomerados , França , Fluxo Gênico , Variação Genética , Geografia , Humanos , Desequilíbrio de Ligação , Repetições de Microssatélites , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...