Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 7(1): 300, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901044

RESUMO

The ever-growing availability of computing power and the sustained development of advanced computational methods have contributed much to recent scientific progress. These developments present new challenges driven by the sheer amount of calculations and data to manage. Next-generation exascale supercomputers will harden these challenges, such that automated and scalable solutions become crucial. In recent years, we have been developing AiiDA (aiida.net), a robust open-source high-throughput infrastructure addressing the challenges arising from the needs of automated workflow management and data provenance recording. Here, we introduce developments and capabilities required to reach sustained performance, with AiiDA supporting throughputs of tens of thousands processes/hour, while automatically preserving and storing the full data provenance in a relational database making it queryable and traversable, thus enabling high-performance data analytics. AiiDA's workflow language provides advanced automation, error handling features and a flexible plugin model to allow interfacing with external simulation software. The associated plugin registry enables seamless sharing of extensions, empowering a vibrant user community dedicated to making simulations more robust, user-friendly and reproducible.

2.
Phys Rev Lett ; 124(23): 239902, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603163

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.117.056805.

3.
J Phys Condens Matter ; 32(16): 165902, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31658458

RESUMO

Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.

4.
Phys Rev Lett ; 117(5): 056805, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517788

RESUMO

Based on the ab initio calculations, we show that MoTe_{2}, in its low-temperature orthorhombic structure characterized by an x-ray diffraction study at 100 K, realizes 4 type-II Weyl points between the Nth and (N+1)th bands, where N is the total number of valence electrons per unit cell. Other WPs and nodal lines between different other bands also appear close to the Fermi level due to a complex topological band structure. We predict a series of strain-driven topological phase transitions in this compound, opening a wide range of possible experimental realizations of different topological semimetal phases. Crucially, with no strain, the number of observable surface Fermi arcs in this material is 2-the smallest number of arcs consistent with time-reversal symmetry.

5.
Nature ; 527(7579): 495-8, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26607545

RESUMO

Fermions--elementary particles such as electrons--are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals--materials hosting Weyl fermions--were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...