Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 313(1): E26-E36, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28325733

RESUMO

Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT). The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate. For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R-/- mice after acute anandamide administration or inhibition of endocannabinoid degradation by JZL195. Additional experiments were conducted on rat AT explants to evaluate the direct consequences of ECS activation on glycerol release and signaling pathways. Treatments stimulated glycerol release in mice fasted for 6 h and injected with glucose but not in 24-h fasted mice or in CB1R-/-, suggesting that the effect was dependent on plasma insulin levels and mediated by CB1R. We concomitantly observed that Akt cascade activity was decreased, indicating an alteration of the antilipolytic action of insulin. Similar results were obtained with tissue explants exposed to anandamide, thus identifying CB1R of AT as a major target. This study indicates the existence of a functional interaction between CB1R and lipolysis regulation in AT. Further investigation is needed to test if the elevation of ECS tone encountered in obesity is associated with excess fat mobilization contributing to ectopic fat deposition and related metabolic disorders.


Assuntos
Tecido Adiposo/fisiologia , Endocanabinoides/metabolismo , Resistência à Insulina/fisiologia , Insulina/sangue , Lipólise/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Ácidos Graxos não Esterificados/biossíntese , Hidrólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/fisiologia
2.
Diabetes ; 65(7): 1824-37, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27207550

RESUMO

Evidence suggests that alterations of glucose and lipid homeostasis induced by obesity are associated with the elevation of endocannabinoid tone. The biosynthesis of the two main endocannabinoids, N-arachidonoylethanolamine and 2-arachidonoyl-glycerol, which derive from arachidonic acid, is influenced by dietary fatty acids (FAs). We investigated whether exposure to n-3 FA at a young age may decrease tissue endocannabinoid levels and prevent metabolic disorders induced by a later high-fat diet (HFD) challenge. Three-week-old mice received a 5% lipid diet containing lard, lard plus safflower oil, or lard plus linseed oil for 10 weeks. Then, mice were challenged with a 30% lard diet for 10 additional weeks. A low n-6/n-3 FA ratio in the early diet induces a marked decrease in liver endocannabinoid levels. A similar reduction was observed in transgenic Fat-1 mice, which exhibit high tissue levels of n-3 FA compared with wild-type mice. Hepatic expression of key enzymes involved in carbohydrate and lipid metabolism was concomitantly changed. Interestingly, some gene modifications persisted after HFD challenge and were associated with improved glycemic control. These findings indicate that early dietary interventions based on n-3 FA may represent an alternative strategy to drugs for reducing endocannabinoid tone and improving metabolic parameters in the metabolic syndrome.


Assuntos
Glicemia/metabolismo , Endocanabinoides/metabolismo , Fígado/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Animais , Peso Corporal/fisiologia , Metabolismo dos Carboidratos/genética , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Homeostase/fisiologia , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/metabolismo
3.
Diabetes ; 64(3): 808-18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25281429

RESUMO

The endocannabinoid system (ECS) is associated with an alteration of glucose homeostasis dependent on cannabinoid receptor-1 (CB1R) activation. However, very little information is available concerning the consequences of ECS activation on intestinal glucose absorption. Mice were injected intraperitoneally with anandamide, an endocannabinoid binding both CB1R and CB2R. We measured plasma glucose and xylose appearance after oral loading, gastrointestinal motility, and glucose transepithelial transport using the everted sac method. Anandamide improved hyperglycemia after oral glucose charge whereas glucose clearance and insulin sensitivity were impaired, pointing out some gastrointestinal events. Plasma xylose appearance was delayed in association with a strong decrease in gastrointestinal transit, while anandamide did not alter transporter-mediated glucose absorption. Interestingly, transit was nearly normalized by coinjection of SR141716 and AM630 (CB1R and CB2R antagonist, respectively), and AM630 also reduced the delay of plasma glucose appearance induced by anandamide. When gastric emptying was bypassed by direct glucose administration in the duodenum, anandamide still reduced plasma glucose appearance in wild-type but not in CB1R(-/-) mice. In conclusion, our findings demonstrated that acute activation of intestinal ECS reduced postprandial glycemia independently on intestinal glucose transport but rather inhibiting gastric emptying and small intestine motility and strongly suggest the involvement of both CB1R and CB2R.


Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Receptores de Canabinoides/metabolismo , Animais , Glicemia/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Hiperglicemia/prevenção & controle , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Período Pós-Prandial , Pirazóis/farmacologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rimonabanto
4.
Biochimie ; 98: 86-101, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24287293

RESUMO

The peroxisomal 3-ketoacyl-CoA thiolase B (ThB) catalyzes the thiolytic cleavage of straight chain 3-ketoacyl-CoAs. Up to now, the ability of ThB to interfere with lipid metabolism was studied in mice fed a laboratory chow enriched or not with the synthetic agonist Wy14,643, a pharmacological activator of the nuclear hormone receptor PPARα. The aim of the present study was therefore to determine whether ThB could play a role in obesity and lipid metabolism when mice are chronically fed a synthetic High Fat Diet (HFD) or a Low Fat Diet (LFD) as a control diet. To investigate this possibility, wild-type (WT) mice and mice deficient for Thb (Thb(-/-)) were subjected to either a synthetic LFD or a HFD for 25 weeks, and their responses were compared. First, when fed a normal regulatory laboratory chow, Thb(-/-) mice displayed growth retardation as well as a severe reduction in the plasma level of Growth Hormone (GH) and Insulin Growth Factor-I (IGF-I), suggesting alterations in the GH/IGF-1 pathway. When fed the synthetic diets, the corrected energy intake to body mass was significantly higher in Thb(-/-) mice, yet those mice were protected from HFD-induced adiposity. Importantly, Thb(-/-) mice also suffered from hypoglycemia, exhibited reduction in liver glycogen stores and circulating insulin levels under the LFD and the HFD. Thb deficiency was also associated with higher levels of plasma HDL (High Density Lipoproteins) cholesterol and increased liver content of cholesterol under both the LFD and the HFD. As shown by the plasma lathosterol to cholesterol ratio, a surrogate marker for cholesterol biosynthesis, whole body cholesterol de novo synthesis was increased in Thb(-/-) mice. By comparing liver RNA from WT mice and Thb(-/-) mice using oligonucleotide microarray and RT-qPCR, a coordinated decrease in the expression of critical cholesterol synthesizing genes and an increased expression of genes involved in bile acid synthesis (Cyp7a1, Cyp17a1, Akr1d1) were observed in Thb(-/-) mice. In parallel, the elevation of the lathosterol to cholesterol ratio as well as the increased expression of cholesterol synthesizing genes were observed in the kidney of Thb(-/-) mice fed the LFD and the HFD. Overall, the data indicate that ThB is not fully interchangeable with the thiolase A isoform. The present study also reveals that modulating the expression of the peroxisomal ThB enzyme can largely reverberate not only throughout fatty acid metabolism but also cholesterol, bile acid and glucose metabolism.


Assuntos
Acetil-CoA C-Aciltransferase/deficiência , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , HDL-Colesterol/sangue , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Glucose/metabolismo , Hormônio do Crescimento/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Intestino Delgado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos
5.
Biochim Biophys Acta ; 1831(4): 759-68, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23333652

RESUMO

Dietary conjugated linoleic acids (CLA) are fatty acid isomers with anticancer activities produced naturally in ruminants or from vegetable oil processing. The anticancer effects of CLA differ upon the cancer origin and the CLA isomers. In this study, we carried out to precise the effects of CLA isomers, c9,t11 and t10,c12 CLA, on mechanisms of cell death induction in colon cancer cells. We first showed that only t10,c12 CLA treatment (25 and 50µM) for 72h triggered apoptosis in colon cancer cells without affecting viability of normal-derived colon epithelial cells. Exposure of colon cancer cells to t10,c12 CLA activated ER stress characterized by induction of eIF2α phoshorylation, splicing of Xbp1 mRNA and CHOP expression. Furthermore, we evidenced that inhibition of CHOP expression and JNK signaling decreased t10,c12 CLA-mediated cancer cell death. Finally, we showed that CHOP induction by t10,c12 CLA was dependent on ROS production and that the anti-oxidant N-acetyl-cysteine reduced CHOP induction-dependent cell death. These results highlight that t10,c12 CLA exerts its cytotoxic effect through ROS generation and a subsequent ER stress-dependent apoptosis in colon cancer cells.


Assuntos
Morte Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácidos Linoleicos Conjugados/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Hepatology ; 55(3): 790-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21987372

RESUMO

UNLABELLED: It is well established that inactivation of the central endocannabinoid system (ECS) through antagonism of cannabinoid receptor 1 (CB1R) reduces food intake and improves several pathological features associated with obesity, such as dyslipidemia and liver steatosis. Nevertheless, recent data indicate that inactivation of peripheral CB1R could also be directly involved in the control of lipid metabolism independently of central CB1R. To further investigate this notion, we tested the direct effect of the specific CB1R antagonist, SR141716, on hepatic carbohydrate and lipid metabolism using cultured liver slices. CB1R messenger RNA expression was strongly decreased by SR141716, whereas it was increased by the CB1R agonist, arachidonic acid N-hydroxyethylamide (AEA), indicating the effectiveness of treatments in modulating ECS activity in liver explants both from lean or ob/ob mice. The measurement of O(2) consumption revealed that SR141716 increased carbohydrate or fatty acid utilization, according to the cellular hormonal environment. In line with this, SR141716 stimulated ß-oxidation activity, and the role of CB1R in regulating this pathway was particularly emphasized when ECS was hyperactivated by AEA and in ob/ob tissue. SR141716 also improved carbohydrate and lipid metabolism, blunting the AEA-induced increase in gene expression of proteins related to lipogenesis. In addition, we showed that SR141716 induced cholesterol de novo synthesis and high-density lipoprotein uptake, revealing a relationship between CB1R and cholesterol metabolism. CONCLUSION: These data suggest that blocking hepatic CB1R improves both carbohydrate and lipid metabolism and confirm that peripheral CB1R should be considered as a promising target to reduce cardiometabolic risk in obesity.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Obesidade/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Colesterol/metabolismo , Modelos Animais de Doenças , Dislipidemias/etiologia , Dislipidemias/metabolismo , Dislipidemias/prevenção & controle , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Obesidade/complicações , Obesidade/fisiopatologia , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Rimonabanto , Técnicas de Cultura de Tecidos
7.
Lipids ; 46(7): 647-57, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21614647

RESUMO

Elaidic acid (trans-9-C18:1 or trans-9) is assumed to exert atherogenic effects due to its double bond configuration. The possibility that trans-9 and vaccenic acid (trans-11-C18:1 or trans-11), its positional isomer, were biochemically equivalent and interchangeable compounds, was investigated by reference to their cis-isomers through esterification-related activities using rat liver cells and subcellular fractions. In hepatocytes, both trans-C18:1 were incorporated to the same extent in triacylglycerols, but trans-9 was more esterified than trans-11 into phospholipids (P < 0.05). Glycerol-3-phosphate acyltransferase activity in microsomes was lower with trans-11 than with trans-9, while this activity in mitochondria was ~40% greater with trans-11 than with trans-9 (P < 0.05). Activity of 2-lysophosphatidic acid acyltransferase in microsomes was of comparable extent with both trans isomers, but activity of 2-lysophosphatidylcholine acyltransferase was significantly greater with trans-9 than with trans-11 at P < 0.01. Lipoproteins secreted by hepatocytes reached equivalent levels in the presence of any isomers, but triacylglycerol production was more elevated with trans-11 than with trans-9 at P < 0.05. Cholesterol efflux from previously labelled hepatocytes was lower with trans-11 than with trans-9. When these cells were exposed to either trans-C18:1, the gene expression of proteins involved in fatty acid esterification and lipoprotein synthesis was unaffected, which indicates that the biochemical differences essentially depended on enzyme/substrate affinities. On the whole, vaccenic and elaidic acid were shown to incorporate cell phospholipids unequally, at least in vitro, which suggests they can differently affect lipid metabolic pathways in normal cells.


Assuntos
Hepatócitos/metabolismo , Fígado/metabolismo , Ácido Oleico/farmacocinética , Ácidos Oleicos/farmacocinética , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo , Animais , Técnicas de Cultura de Células , Colesterol/metabolismo , Esterificação/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Glicerol-3-Fosfato O-Aciltransferase/efeitos dos fármacos , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Hepatócitos/efeitos dos fármacos , Isomerismo , Lipoproteínas/metabolismo , Fígado/efeitos dos fármacos , Masculino , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Oleico/administração & dosagem , Ácido Oleico/química , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/química , Ratos , Ratos Wistar , Equivalência Terapêutica
8.
Biochimie ; 93(5): 876-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21352884

RESUMO

Peroxisomal 3-ketoacyl-CoA thiolase B (Thb) catalyzes the final step in the peroxisomal ß-oxidation of straight-chain acyl-CoAs and is under the transcription control of the nuclear hormone receptor PPARα. PPARα binds to and is activated by the synthetic compound Wy14,643 (Wy). Here, we show that the magnitude of Wy-mediated induction of peroxisomal ß-oxidation of radiolabeled (1-(14)C) palmitate was significantly reduced in mice deficient for Thb. In contrast, mitochondrial ß-oxidation was unaltered in Thb(-/-) mice. Given that Wy-treatment induced Acox1 and MFP-1/-2 activity at a similar level in both genotypes, we concluded that the thiolase step alone was responsible for the reduced peroxisomal ß-oxidation of fatty acids. Electron microscopic analysis and cytochemical localization of catalase indicated that peroxisome proliferation in the liver after Wy-treatment was normal in Thb(-/-) mice. Intriguingly, micro-array analysis revealed that mRNA levels of genes encoding cholesterol biosynthesis enzymes were upregulated by Wy in Wild-Type (WT) mice but not in Thb(-/-) mice, which was confirmed at the protein level for the selected genes. The non-induction of genes encoding cholesterol biosynthesis enzymes by Wy in Thb(-/-) mice appeared to be unrelated to defective SREBP-2 or PPARα signaling. No difference was observed in the plasma lathosterol/cholesterol ratio (a marker for de novo cholesterol biosynthesis) between Wy-treated WT and Thb(-/-) mice, suggesting functional compensation. Overall, we conclude that ThA and SCPx/SCP2 thiolases cannot fully compensate for the absence of ThB. In addition, our data indicate that ThB is involved in the regulation of genes encoding cholesterol biosynthesis enzymes in the liver, suggesting that the peroxisome could be a promising candidate for the correction of cholesterol imbalance in dyslipidemia.


Assuntos
Acetil-CoA C-Aciltransferase/metabolismo , Fígado/enzimologia , PPAR alfa/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Regulação para Cima , Acetil-CoA C-Aciltransferase/genética , Animais , Colesterol/genética , Colesterol/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Hepatomegalia/genética , Hepatomegalia/patologia , Humanos , Metabolismo dos Lipídeos/genética , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Palmitatos/metabolismo , Proliferadores de Peroxissomos/farmacologia , Peroxissomos/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais
9.
Clin Sci (Lond) ; 121(1): 19-28, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21288203

RESUMO

To investigate further the mechanisms of developmental programming, we analysed the effects of maternal overnutrition and of postnatal high-fat feeding on adipose tissue metabolism in the offspring. Postnatal changes in serum adiponectin, leptin and TAG [triacylglycerol (triglyceride)] levels, adipose tissue TAGs, fatty acids and enzyme activities were determined in offspring of cafeteria-diet-fed dams during gestation and lactation, weaned on to standard chow or on to cafeteria diet. Obese rats showed higher adiposity (+35% to 85%) as well as a significant increase in serum glucose, insulin, leptin, adiponectin and TAG levels (P<0.01) and adipose tissue LPL (lipoprotein lipase) and GPDH (glycerol-3-phosphate dehydrogenase) activities (P<0.01), compared with control pups at weaning (day 21) and at adulthood (day 90). Adipose HSL (hormone-sensitive lipase) activity was increased only at day 90 (P<0.05), and FAS (fatty acid synthase) activity remained unchanged. The proportions of SFAs (saturated fatty acids) and MUFAs (mono-unsaturated fatty acids) and the Δ(9)-desaturation index were significantly increased (P<0.05), whereas PUFAs (polyunsaturated fatty acids) were decreased (P<0.01) in serum and adipose TAGs of obese pups compared with controls. The cafeteria diet at weaning induced more severe abnormalities in obese rats. In conclusion, maternal overnutrition induced permanent changes in adipose tissue metabolism of the offspring. These pre-existing alterations in offspring were worsened under a high-fat diet from weaning to adulthood. Consequently, adipose adipokines and enzymes could provide a potential therapeutic target, and new investigations in this field could constitute strategies to improve the impact of early-life overnutrition.


Assuntos
Tecido Adiposo/metabolismo , Obesidade/metabolismo , Complicações na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Adipócitos/metabolismo , Tecido Adiposo/patologia , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Ácidos Graxos/sangue , Comportamento Alimentar , Feminino , Hormônios/sangue , Obesidade/embriologia , Obesidade/fisiopatologia , Tamanho do Órgão/fisiologia , Gravidez , Ratos , Ratos Wistar , Triglicerídeos/sangue
10.
Biochim Biophys Acta ; 1811(6): 409-17, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21172452

RESUMO

Metabolic syndrome characterized by insulin resistance and obesity is accompanied by severe lipid metabolism perturbations and chronic low-grade inflammation. However, many unresolved questions remained regarding the regulation that underlie dyslipidemia, particularly the regulation of the metabolic cascade (synthesis and release) leading to eicosanoid precursors release. This study was undertaken to investigate the regulation of desaturases/elongases and phospholipases A(2) during the establishment of metabolic syndrome. Our results showed that delta-6 desaturase as well as elongase-6 expressions were upregulated in 3-month-old Zucker fatty rats as compared to lean littermates, independently of SREBP-1c activation. We also demonstrated for the first time an increase of liver group VII phospholipase A(2) gene expression in the obese animals together with a strong specific inhibition of type IVA and VIA phospholipases A(2). These results suggest that the regulation of unsaturated fatty acids biosynthesis and signalling cascade could contribute to the development of liver lipid dysregulation related to metabolic syndrome and may be considered as new potential targets in such pathological conditions.


Assuntos
Acetiltransferases/metabolismo , Eicosanoides/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Obesidade/metabolismo , Fosfolipases A2/metabolismo , Acetiltransferases/genética , Animais , Western Blotting , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/biossíntese , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo , Resistência à Insulina , Linoleoil-CoA Desaturase/genética , Linoleoil-CoA Desaturase/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Obesidade/genética , Obesidade/patologia , Fosfolipases A2/genética , Ratos , Ratos Zucker , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Diabetes Metab Res Rev ; 26(4): 297-305, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20503262

RESUMO

BACKGROUND: Pioglitazone (PIO) and rosiglitazone (ROSI) are widely used as oral antidiabetic agents for treatment of type 2 diabetes. Although these medications exert similar effects on blood glucose, recent clinical studies indicated that PIO has a more pronounced beneficial effect on lipid parameters than ROSI. In order to get further insight into the lipid effects of both drugs, we tested whether PIO, compared to ROSI, could exert direct effects on lipid liver metabolism in relation with plasma lipids. METHODS: We performed in vitro studies using mice liver slices incubated 21 h either with ROSI (1 micromol/L) or PIO (7.5 micromol/L). RESULTS: We showed that both glitazones slightly reduced HMG-CoA reductase mRNA levels at the same degree but only PIO reduced intracellular cholesterol content, suggesting an alteration of cholesterol uptake rather than an inhibition of cholesterol biosynthesis. This concept was supported by the reduction of scavenger receptor class B type I expression, hepatic lipase activity and high-density lipoprotein cholesterol uptake in PIO-treated liver explants. Conversely, hepatic lipase mRNA levels were increased 3.5-fold. ROSI, but not PIO, induced acetyl-CoA carboxylase and fatty acid synthase gene expression and increased apoB secretion suggesting a stimulation of lipogenesis. Concurrently, peroxisome proliferator-activated receptor-gamma mRNA levels were induced by ROSI and not significantly changed by PIO. Besides, PIO appeared to be a more potent activator of AMP-Activated Protein Kinase than ROSI. CONCLUSIONS: PIO and ROSI exert specific direct effects on liver and extrapolating these data to humans could explain the significant improvements in plasma lipids observed in diabetic patients treated with PIO.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , HDL-Colesterol/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Lipase/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Pioglitazona , Rosiglitazona , Técnicas de Cultura de Tecidos
12.
Lipids ; 45(7): 581-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20508999

RESUMO

Vaccenic acid (trans-11-C(18:1)) chemically resembles elaidic acid (trans-9-C(18:1)) which is assumed to increase the risk of cardiovascular diseases, and thus could exert similar effects. Possible different oxidation rates of vaccenic versus elaidic acid were checked in muscles and liver, and through related gene expression in normal rat liver cells. In hepatic mitochondria, carnitine palmitoyltransferase (CPT) I exhibited comparable activity rates with both trans-isomers. CPT II activity was 30% greater (P < 0.05) with vaccenic than with elaidic acid as nonesterified fatty acids (NEFAs) or acyl-CoAs. Activity of the first beta-oxidation step was similar between the isomers in all the tissue slices and liver extracts assayed. Respiration rates were comparable with both trans-isomers as NEFAs in various liver extracts, but were 30% greater (P < 0.05) with vaccenoyl-CoA than with elaidoyl-CoA in liver mitochondria. Vaccenic acid was oxidised 25% more (P < 0.05) by liver peroxisomes than elaidic acid. In hepatocytes cultured with trans- and corresponding cis-C(18:1) isomers, gene expression of CPT I, hydroxyacyl-CoA dehydrogenase and hydroxymethylglutaryl-CoA synthase was at least 100% increased (P < 0.05), but was unchanged with vaccenic acid, relative to controls. In conclusion, the position and geometry of the double bonds in acyl chains are suggested to confer on vaccenic and elaidic acid specific biochemical properties that might differently affect their fates in tissues.


Assuntos
Regulação da Expressão Gênica , Fígado/metabolismo , Ácido Oleico/metabolismo , Ácidos Oleicos/metabolismo , Acil Coenzima A , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Masculino , Ácido Oleico/química , Ácidos Oleicos/química , Oxirredução , Ratos , Ratos Wistar
13.
Metabolism ; 59(12): 1701-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20494379

RESUMO

The combined effects of developmental programming and high-fat feeding at weaning on fatty acid metabolism of the offspring are not well known. In the present study, we aim at characterizing the influence of maternal and offspring's own diets on liver and very low-density lipoprotein (VLDL) lipids; fatty acid profiles of VLDL and liver phospholipids, triglycerides, and cholesteryl esters; and hepatic enzyme activities. Twenty obese male rats born to cafeteria diet-fed dams and 20 control rats born to control diet-fed dams were selected. At weaning, 10 rats of each group were fed control or cafeteria diet. Obese rats had a significant increase in serum glucose, insulin, leptin, VLDL apolipoprotein B100 and lipid levels, and hepatic fatty acid synthase and a reduction in acyl-coenzyme A oxidase and dehydrogenase activities compared with control pups at day 21 and day 90. Hepatic steatosis was apparent only at day 90. The proportions of saturated fatty acids and monounsaturated fatty acids and the oleic to stearic acid ratio were significantly increased, whereas polyunsaturated fatty acids and the arachidonic to linoleic acid ratio were decreased, in liver and VLDL lipids of obese pups compared with controls. The cafeteria diet at weaning induced more severe abnormalities in obese rats. In conclusion, maternal cafeteria diet induced a permanent reduction in hepatic ß-oxidation and an increase in hepatic lipogenesis that caused liver steatosis and VLDL and fatty acid alterations in adult offspring. These preexisting alterations in offspring were worsened under a high-fat diet from weaning to adulthood. Nutritional recommendations in obesity must then target maternal and postnatal nutrition, especially fatty acid composition.


Assuntos
Ingestão de Energia , Ácidos Graxos não Esterificados/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Exposição Materna , Obesidade/metabolismo , Animais , Glicemia/análise , Peso Corporal , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Feminino , Insulina/sangue , Leptina/sangue , Fígado/enzimologia , Masculino , Tamanho do Órgão , Gravidez , Ratos , Ratos Wistar
14.
Appl Microbiol Biotechnol ; 87(3): 1089-99, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20422183

RESUMO

In hydrophobic compounds biotechnology, medium-chain-length metabolites often perturb cell activity. Their effect is usually studied in model conditions of growth in glucose media. Here, we study whether culture on lipids has an impact on the resistance of Yarrowia lipolytica to such compounds: Cells were cultured on glucose or oleate and submitted to gamma-dodecalactone. After a 60-min exposure to 3 g L(-1), about 80% of the glucose-grown cells (yeast extract peptone dextrose (YPD) cells) had lost their cultivability, 38% their membrane integrity, and 31% their reducing capacity as shown with propidium iodide and methylene blue, respectively. For oleate-grown cells, treatment at 6 g L(-1) did not alter cultivability despite some transient loss of membrane integrity from 3 g L(-1). It was shown with diphenylhexatriene and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene that oleate-grown cells had membranes more fluid and less sensitive to the lactone-induced fluidization. Analyses revealed also higher contents of ergosterol but, for YPD- and minimum-oleate-grown cells (YNBO cells), the addition of lactone provoked a decrease in the concentration of ergosterol in a way similar to the depletion by methyl-beta-cyclodextrin and an important membrane fluidization. Ergosterol depletion or incorporation increased or decreased, respectively, cell sensitivity to lactone. This study shows that the embedment of oleate moieties into membranes as well as higher concentrations of sterol play a role in the higher resistance to lactone of oleate-grown cells (YPO cells). Similar oleate-induced increase in resistance was also observed for Rhodotorula and Candida strains able to grow on oleate as the sole carbon source whereas Saccharomyces and Sporidiobolus cells were more sensitive after induction.


Assuntos
Membrana Celular/química , Meios de Cultura/química , Lactonas/química , Yarrowia/metabolismo , Membrana Celular/metabolismo , Meios de Cultura/metabolismo , Glucose/metabolismo , Lactonas/metabolismo , Viabilidade Microbiana , Ácido Oleico/metabolismo , Yarrowia/química , Yarrowia/crescimento & desenvolvimento
15.
Diabetes ; 59(4): 926-34, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20110567

RESUMO

OBJECTIVE: The beneficial effects of the inactivation of endocannabinoid system (ECS) by administration of antagonists of the cannabinoid receptor (CB) 1 on several pathological features associated with obesity is well demonstrated, but the relative contribution of central versus peripheral mechanisms is unclear. We examined the impact of CB1 antagonism on liver and adipose tissue lipid metabolism in a mouse model of diet-induced obesity. RESEARCH DESIGN AND METHODS: Mice were fed either with a standard diet or a high-sucrose high-fat (HSHF) diet for 19 weeks and then treated with the CB1-specific antagonist SR141716 (10 mg x kg(-1) x day(-1)) for 6 weeks. RESULTS: Treatment with SR141716 reduced fat mass, insulin levels, and liver triglycerides primarily increased by HSHF feeding. Serum adiponectin levels were restored after being reduced in HSHF mice. Gene expression of scavenger receptor class B type I and hepatic lipase was induced by CB1 blockade and associated with an increase in HDL-cholesteryl ether uptake. Concomitantly, the expression of CB1, which was strongly increased in the liver and adipose tissue of HSHF mice, was totally normalized by the treatment. Interestingly, in visceral but not subcutaneous fat, genes involved in transport, synthesis, oxidation, and release of fatty acids were upregulated by HSHF feeding, while this effect was counteracted by CB1 antagonism. CONCLUSIONS: A reduction in the CB1-mediated ECS activity in visceral fat is associated with a normalization of adipocyte metabolism, which may be a determining factor in the reversion of liver steatosis induced by treatment with SR141716.


Assuntos
Dieta , Fígado Gorduroso/genética , Obesidade/etiologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Adiponectina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Ração Animal , Animais , Apolipoproteínas A/metabolismo , Apolipoproteínas B/metabolismo , Peso Corporal , Antagonistas de Receptores de Canabinoides , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Regulação da Expressão Gênica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Obesos , Obesidade/induzido quimicamente , Tamanho do Órgão , Piperidinas/farmacologia , Pirazóis/farmacologia , Rimonabanto , Sacarose/farmacologia
16.
Biochimie ; 91(11-12): 1376-86, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19772884

RESUMO

The peroxisomal 3-ketoacyl-CoA thiolase B (Thb) gene was previously identified as a direct target gene of PPARalpha, a nuclear hormone receptor activated by hypolipidemic fibrate drugs. To better understand the role of ThB in hepatic lipid metabolism in mice, Sv129 wild-type and Thb null mice were fed or not the selective PPARalpha agonist Wy14,643 (Wy). Here, it is shown that in contrast to some other mouse models deficient for peroxisomal enzymes, the hepatic PPARalpha signaling cascade in Thb null mice was normal under regular conditions. It is of interest that the hypotriglyceridemic action of Wy was reduced in Thb null mice underlining the conclusion that neither thiolase A nor SCPx/SCP2 thiolase can fully substitute for ThB in vivo. Moreover, a significant increased in the expression of lipogenic genes such as Stearoyl CoA Desaturase-1 (SCD1) was observed in Thb null mice fed Wy. Elevation of Scd1 mRNA and protein levels led to higher SCD1 activity, through a molecular mechanism that is probably SREBP1 independent. In agreement with higher SCD1, enrichment of liver mono-unsaturated fatty acids of the n-7 and n-9 series was found in Thb null mice fed Wy. Overall, we show that the reduced peroxisomal beta-oxidation of fat observed in Thb null mice fed Wy is associated with enhanced hepatic lipogenesis, through the combined elevation of microsomal SCD1 protein and activity. Ultimately, not only the amount but also the quality of the hepatic fatty acid pool is modulated upon the deletion of Thb.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/antagonistas & inibidores , Peroxissomos/efeitos dos fármacos , Pirimidinas/farmacologia , Estearoil-CoA Dessaturase/metabolismo , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Ácidos Graxos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/patologia , Peroxissomos/metabolismo , RNA Mensageiro/efeitos dos fármacos
17.
J Nutr ; 139(10): 1901-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692528

RESUMO

Feeding mice the trans-10, cis-12 (t10c12) conjugated linoleic acid (CLA) isomer is associated with lipodystrophy, insulin resistance, hyperinsulinemia, and liver steatosis. It has been hypothesized that CLA-induced liver steatosis is the result of increased hepatic lipogenesis stimulated by high insulin levels. We studied the effects of a 12-d t10c12CLA treatment (1 g/100 g diet) on liver carbohydrate and lipid metabolism in control and streptozotocin (STZ)-injected mice. STZ mice were characterized by insulin deficiency, hypertriglyceridemia, and depletion of liver triglyceride and glycogen. Remarkably, feeding t10c12CLA to diabetic mice (STZ-CLA) normalized these variables. Reconstitution of fat stores in the livers of STZ-CLA mice was associated with lower fatty acid (FA) oxidation rates and greater malonyl-CoA concentration than in STZ mice. FA translocase and VLDL receptor mRNA levels were greater in STZ-CLA than in STZ mice, suggesting that t10c12CLA increased liver lipid uptake. Phosphoenolpyruvate carboxykinase mRNA levels and AMP kinase phosphorylation were lower in STZ-CLA than in STZ mice, indicating that t10c12CLA may reduce glucogenic activity and promote glycogenesis in diabetic mice. Because glycemia and glucokinase expression were not modified by t10c12CLA treatment, we postulated that glycogen accumulation is likely not the result of an effect of t10c12CLA on plasma glucose utilization, but rather is due to the contribution of lactate, the concentration of which was higher in muscle of STZ-CLA mice. The results demonstrate that t10c12CLA stimulates liver lipid accumulation in the absence of insulin and, thus, suggest that t10c12CLA can improve liver carbohydrate and lipid metabolism in type I diabetic mice.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Ácidos Linoleicos Conjugados/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Animais , Composição Corporal/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Lipids ; 44(3): 237-47, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19156456

RESUMO

The study was undertaken to determine whether eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3), esterified in phospholipids (PL) as liposomes or in triglycerides (TG) as oil, exhibited comparable fates in liver lipids and whether these fates were associated with gene expressions related to fatty acid (FA) metabolism. PL and TG mixtures with close contents in EPA and DHA were administered to rats over 2 weeks. Most relevant events occurred after 3 days for both treatments. At that time, liposomes, compared with oil, increased the liver content in PL with a FA composition enriched in n-6 FA, comparable in DHA and much lower in EPA. Moreover, liposomes increased the activity and mRNA levels of carnitine palmitoyltransferase (CPT) I. In contrast, fish oil exerted opposite effects on CPT I and increased the genic expression of lipogenic enzymes. Liposomes, unlike fish oil, apparently increased the mRNA levels of acyl-CoA oxidase and the activity of the peroxisomal FA-oxidising system. Concomitantly, mRNA levels of hepatic lipoprotein receptors were increased with both diets, but intracellular proteins involved in free FA uptake and lipid synthesis were up-regulated only with liposome-treated rats. The quasi absence of EPA in hepatic PL of liposome-treated rats on the short term could result from increased beta-oxidation activities through metabolic regulations induced by more available free EPA and other PUFA.


Assuntos
Ácido Eicosapentaenoico/metabolismo , Óleos de Peixe/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Lipossomos , Fígado/metabolismo , Animais , Esterificação , Ácidos Graxos/metabolismo , Óleos de Peixe/farmacologia , Masculino , Microssomos Hepáticos/metabolismo , Peroxissomos/metabolismo , Ratos , Ratos Wistar
19.
Clin Sci (Lond) ; 116(8): 669-80, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18986302

RESUMO

The aim of the present study was to determine the time course of changes in oxidant/antioxidant status, as well as serum glucose, insulin, leptin and lipid levels, liver adipose tissue and muscle lipid and protein contents, in cafeteria-diet-fed dams during gestation and lactation, and in their offspring throughout adulthood. Food intake was also evaluated. The cafeteria diet induced a significant increase in maternal body and relative adipose tissue weights, daily energy intake, and plasma glucose, insulin, leptin and lipid levels at parturition (day 0) and at the end of lactation (day 21). Plasma total antioxidant status [ORAC (oxygen radical absorbance capacity)], erythrocyte catalase and SOD (superoxide dismutase) activities were lower, whereas plasma hydroperoxide and carbonyl protein levels were higher in cafeteria-diet-fed mothers compared with control mothers at days 0 and 21. Pups from cafeteria-diet-fed dams, both males and females, also had consistently higher body and relative adipose tissue weights, and plasma glucose, insulin, leptin, triacylglycerol (triglyceride) and cholesterol levels at birth (day 0), weaning (day 21) and 3 months of age (day 90). These offspring had significantly lower ORAC and catalase activity, and higher plasma hydroperoxide and carbonyl protein levels and SOD activity at birth, at days 21 and 90 compared with control offspring. In conclusion, excessive maternal fat and energy intake can play an important role in the development of metabolic disorders in the offspring. Maternal oxidative stress may be among the responsible factors. Fetal oxidative stress may present an additional confounding influence and probably contributes to additional disorders, aggravating features of the metabolic syndrome. An improvement in maternal oxidant/antioxidant status during pregnancy and lactation, with adequate nutrition, could have beneficial effects on the progeny.


Assuntos
Antioxidantes/metabolismo , Obesidade/sangue , Oxidantes/sangue , Complicações na Gravidez/sangue , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Ingestão de Energia/fisiologia , Eritrócitos/enzimologia , Feminino , Insulina/sangue , Lipídeos/análise , Masculino , Estresse Oxidativo/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteínas/análise , Ratos , Ratos Wistar
20.
Microbiology (Reading) ; 154(Pt 9): 2611-2619, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18757795

RESUMO

Cyclopropane fatty acid (CFA) synthesis was investigated in Oenococcus oeni. The data obtained demonstrated that acid-grown cells or cells harvested in the stationary growth phase showed changes in fatty acid composition similar to those of ethanol-grown cells. An increase of the CFA content and a decrease of the oleic acid content were observed. The biosynthesis of CFAs from unsaturated fatty acid phospholipids is catalysed by CFA synthases. Quantitative real-time-PCR experiments were performed on the cfa gene of O. oeni, which encodes a putative CFA synthase. The level of cfa transcripts increased when cells were harvested in stationary phase and when cells were grown in the presence of ethanol or at low pH, suggesting transcriptional regulation of the cfa gene under different stress conditions. In contrast to Escherichia coli, only one functional promoter was identified upstream of the cfa gene of O. oeni. The function of the cfa gene was confirmed by complementation of a cfa-deficient E. coli strain. Nevertheless, the complementation remained partial because the conversion percentage of unsaturated fatty acids into CFA of the complemented strain was much lower than that of the wild-type strain. Moreover, a prevalence of cycC19 : 0 was observed in the membrane of the complemented strain. This could be due to a specific affinity of the CFA synthase from O. oeni. In spite of this partial complementation, the complemented strain of E. coli totally recovered its viability after ethanol shock (10 %, v/v) whereas its viability was only partly recovered after an acid shock at pH 3.0.


Assuntos
Cocos Gram-Positivos/enzimologia , Cocos Gram-Positivos/genética , Lipídeos de Membrana/metabolismo , Metiltransferases/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Ciclopropanos , Escherichia coli/genética , Etanol/metabolismo , Ácidos Graxos/biossíntese , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Cocos Gram-Positivos/crescimento & desenvolvimento , Cocos Gram-Positivos/metabolismo , Concentração de Íons de Hidrogênio , Ácido Oleico/metabolismo , RNA Bacteriano/genética , Alinhamento de Sequência , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...