Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 22(1): 985-997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992500

RESUMO

We set out to demonstrate the development of a highly conductive polymer based on poly-(3,4-ethylenedithia thiophene) (PEDTT), PEDOTs structural analogue historically notorious for structural disorder and limited conductivities. The caveat therein was previously described to lie in intra-molecular repulsions. We demonstrate how a tremendous >2600-fold improvement in conductivity and metallic features, such as magnetoconductivity can be achieved. This is achieved through a careful choice of the counter-ion (sulphate) and the use of oxidative chemical vapour deposition (oCVD). It is shown that high structural order on the molecular level was established and the formation of crystallites tens of nanometres in size was achieved. We infer that the sulphate ions therein intercalate between the polymer chains, thus forming densely packed crystals of planar molecules with extended π-systems. Consequently, room-temperature conductivities of above 1000 S cm-1 are achieved, challenging those of conventional PEDOT:PSS. The material is in the critical regime of the metal-insulator transition.

2.
Adv Mater ; 32(25): e1902177, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32419235

RESUMO

The most active and efficient catalysts for the electrochemical hydrogen evolution reaction (HER) rely on platinum, a fact that increases the cost of producing hydrogen and thereby limits the widespread adoption of this fuel. Here, a metal-free organic electrocatalyst that mimics the platinum surface by implementing a high work function and incorporating hydrogen-affine hydrogen bonds is introduced. These motifs, inspired from enzymology, are deployed here as selective reaction centres. It is shown that the keto-amine hydrogen-bond motif enhances the rate-determining step in proton reduction to molecular hydrogen. The keto-amine-functionalized polymers reported herein evolve hydrogen at an overpotential of 190 mV. They share certain key properties with platinum: a similar work function and excellent electrochemical stability and chemical robustness. These properties allow the demonstration of one week of continuous HER operation without notable degradation nor delamination from the carrier electrode. Scaled continuous-flow electrolysis is reported and 1 L net molecular hydrogen is produced within less than 9 h using 2.3 mg of polymer electrocatalyst.

3.
Sci Adv ; 3(8): e1700686, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28798958

RESUMO

Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes the search for scalable, metal-free, CO2 reduction reaction (CO2RR) catalysts all the more important. We report an all-organic, that is, metal-free, electrocatalyst that achieves impressive performance comparable to that of best-in-class Ag electrocatalysts. We hypothesized that polydopamine-a conjugated polymer whose structure incorporates hydrogen-bonded motifs found in enzymes-could offer the combination of efficient electrical conduction, together with rendered active catalytic sites, and potentially thereby enable CO2RR. Only by developing a vapor-phase polymerization of polydopamine were we able to combine the needed excellent conductivity with thin film-based processing. We achieve catalytic performance with geometric current densities of 18 mA cm-2 at 0.21 V overpotential (-0.86 V versus normal hydrogen electrode) for the electrosynthesis of C1 species (carbon monoxide and formate) with continuous 16-hour operation at >80% faradaic efficiency. Our catalyst exhibits lower overpotentials than state-of-the-art formate-selective metal electrocatalysts (for example, 0.5 V for Ag at 18 mA cm-1). The results confirm the value of exploiting hydrogen-bonded sequences as effective catalytic centers for renewable and cost-efficient industrial CO2RR applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...