Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(24): 25552-25564, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096149

RESUMO

Photomemristors have been regarded as one of the most promising candidates for next-generation hardware-based neuromorphic computing due to their potentials of fast data transmission and low power consumption. However, intriguingly, so far, photomemristors seldom display truly nonvolatile memory characteristics with high light sensitivity. Herein, we demonstrate ultrasensitive photomemristors utilizing two-dimensional (2D) Ruddlesden-Popper (RP) perovskites with a highly polar donor-acceptor-type push-pull organic cation, 4-(5-(2-aminoethyl)thiophen-2-yl)benzonitrile+ (EATPCN+), as charge-trapping layers. High linearity and almost zero-decay retention are observed in (EATPCN)2PbI4 devices, which are very distinct from that of the traditional 2D RP perovskite devices consisting of nonpolar organic cations, such as phenethylamine+ (PEA+) and octylamine+ (OA+), and traditional 3D perovskite devices consisting of methylamine+ (MA+). The 2-fold advantages, including desirable spatial crystal arrangement and engineered energetic band alignment, clarify the mechanism of superior performance in (EATPCN)2PbI4 devices. The optimized (EATPCN)2PbI4 photomemristor also shows a memory window of 87.9 V and an on/off ratio of 106 with a retention time of at least 2.4 × 105 s and remains unchanged after >105 writing-reading-erasing-reading endurance cycles. Very low energy consumptions of 1.12 and 6 fJ for both light stimulation and the reading process of each status update are also demonstrated. The extremely low power consumption and high photoresponsivity were simultaneously achieved. The high photosensitivity surpasses that of a state-of-the-art commercial pulse energy meter by several orders of magnitude. With their outstanding linearity and retention, rabbit images have been rebuilt by (EATPCN)2PbI4 photomemristors, which truthfully render the image without fading over time. Finally, by utilizing the powerful ∼8 bits of nonvolatile potentiation and depression levels of (EATPCN)2PbI4 photomemristors, the accuracies of the recognition tasks of CIFAR-10 image classification and MNIST handwritten digit classification have reached 89% and 94.8%, respectively. This study represents the first report of utilizing a functional donor-acceptor type of organic cation in 2D RP perovskites for high-performance photomemristors with characteristics that are not found in current halide perovskites.

2.
Langmuir ; 39(23): 8215-8223, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37260231

RESUMO

X-ray photon correlation spectroscopy (XPCS) is a versatile tool to measure dynamics on the nanometer to micrometer scale in bulk samples. XPCS has also been applied in grazing incidence (GI) geometry to examine the dynamics of surface layers. However, considering GI scattering experiments more universally, the GI geometry leads to a superposition of signals due to reflection and refraction effects, also known from the distorted-wave Born approximation (DWBA). In this paper, the impact of these reflection and refraction effects on the correlation analysis is determined experimentally by measuring grazing incidence transmission XPCS (GT-XPCS) and grazing incidence XPCS (GI-XPCS) simultaneously for a thin film sample, showing non-equilibrium dynamics. The results of the GI and GT geometry comparisons are combined within the framework of the standardly applied, simplified DWBA. These calculations allow identifying the main contributions of the detected signal from the leading scattering terms along the out-of-plane direction qz, which dominate the measured intensity pattern on the detector. In combination with the calculation of the non-linear effect of refraction in GTSAXS and GISAXS, it is possible to identify experimental conditions that can be chosen to run experiments and data analysis as close as possible to transmission XPCS and to explain which limitations for data interpretations are observed. Consequently, the beam exposure can be significantly reduced by using GI geometry only. Calculations of experimental settings prior to experiments are detailed to determine suitable qz regions for a variety of material systems measured in bulk-sensitive GI-XPCS experiments, allowing us to determine the scaling behavior of typical decay times as a function of q that is comparable to the scaling behavior obtained in distortion-free GT-XPCS or transmission XPCS experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...