Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 47(8): 3675-3681, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32422684

RESUMO

PURPOSE: GATE-RTion is a validated version of GATE for clinical use in the field of light ion beam therapy. This paper describes the GATE-RTion project and illustrates its potential through clinical applications developed in three European centers delivering scanned proton and carbon ion treatments. METHODS: GATE-RTion is a collaborative framework provided by the OpenGATE collaboration. It contains a validated GATE release based on a specific Geant4 version, a set of tools to integrate GATE into a clinical environment and a network for clinical users. RESULTS: Three applications are presented: Proton radiography at the Centre Antoine Lacassagne (Nice, France); Independent dose calculation for proton therapy at the Christie NHS Foundation Trust (Manchester, UK); Independent dose calculation for protons and carbon ions at the MedAustron Ion Therapy center (Wiener Neustadt, Austria). CONCLUSIONS: GATE-RTion builds the bridge between researchers and clinical users from the OpenGATE collaboration in the field of Light Ion Beam Therapy. The applications presented in three European facilities using three completely different machines (three different vendors, cyclotron- and synchrotron-based systems, protons, and carbon ions) demonstrate the relevance and versatility of this project.


Assuntos
Terapia com Prótons , Ciclotrons , Método de Monte Carlo , Prótons , Dosagem Radioterapêutica
2.
Phys Med Biol ; 64(17): 17NT01, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31342920

RESUMO

This work describes the dosimetric commissioning of the treatment planning system (TPS) RayStation v6.1 from RaySearch Laboratories (Stockholm, Sweden) for a synchrotron-based scanned proton beam delivery with isocentric and non-isocentric setups at MedAustron. Focus was on the comparison of the pencil beam (PBv4.1) and Monte Carlo (MCv4.0) calculation algorithms. Commissioning of dose calculations was done first for 1D/2D dose delivery where the performance of the beam model in reproducing dosimetric properties for the delivery of single static pencil beams and mono-energetic layers with multiple spots was evaluated. The commissioning for 3D beam delivery employed test cases with increasing complexity: from box-shaped fields in homogeneous phantoms to the introduction of oblique incidences and inhomogeneities. Dose calculations were compared to the measured data for different air gaps and using beams with and without range shifter (RaShi). Depth-dose curves and spot shape comparisons showed good agreement of the results obtained with PBv4.1 and MCv4.0 algorithms at isocentric setup for open beam configurations (without RaShi). Comparison of transverse dose profiles for lateral heterogeneities at different depths showed better performance of the MCv4.0 algorithm in comparison to the PBv4.1 algorithm. In the case of 3D delivery comparisons of measured and TPS-calculated dose with MCv4.0 algorithm in box-shaped fields in water showed an average agreement within 2%. The results for dose calculations with the PBv4.1 algorithm showed larger deviations for beams with RaShi at all evaluated air gaps (from 64.8 cm to 14.8 cm). Our results suggest that the MCv4.0 algorithm shall be used in clinics for final dose calculation when beams with RaShi are used especially in the presence of large air gaps, inclined patient surface and lateral inhomogeneities. The detailed stepwise methodology implemented for the RayStation commissioning in this work could serve as further guidance for other facilities introducing a new TPS for proton beam therapy.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica
3.
Phys Med Biol ; 60(20): 7985-8005, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26418366

RESUMO

This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.


Assuntos
Carbono/uso terapêutico , Radioterapia com Íons Pesados , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons , Radioterapia de Alta Energia , Filtração/instrumentação , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Phys Med Biol ; 57(13): 4223-44, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22684098

RESUMO

Active scanning delivery systems take full advantage of ion beams to best conform to the tumor and to spare surrounding healthy tissues; however, it is also a challenging technique for quality assurance. In this perspective, we upgraded the GATE/GEANT4 Monte Carlo platform in order to recalculate the treatment planning system (TPS) dose distributions for active scanning systems. A method that allows evaluating the TPS dose distributions with the GATE Monte Carlo platform has been developed and applied to the XiO TPS (Elekta), for the IBA proton pencil beam scanning (PBS) system. First, we evaluated the specificities of each dose engine. A dose-conversion scheme that allows one to convert dose to medium into dose to water was implemented within GATE. Specific test cases in homogeneous and heterogeneous configurations allowed for the estimation of the differences between the beam models implemented in XiO and GATE. Finally, dose distributions of a prostate treatment plan were compared. In homogeneous media, a satisfactory agreement was generally obtained between XiO and GATE. The maximum stopping power difference of 3% occurred in a human tissue of 0.9 g cm(-3) density and led to a significant range shift. Comparisons in heterogeneous configurations pointed out the limits of the TPS dose calculation accuracy and the superiority of Monte Carlo simulations. The necessity of computing dose to water in our Monte Carlo code for comparisons with TPSs is also presented. Finally, the new capabilities of the platform are applied to a prostate treatment plan and dose differences between both dose engines are analyzed in detail. This work presents a generic method to compare TPS dose distributions with the GATE Monte Carlo platform. It is noteworthy that GATE is also a convenient tool for imaging applications, therefore opening new research possibilities for the PBS modality.


Assuntos
Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Reprodutibilidade dos Testes , Água
5.
Phys Med Biol ; 56(16): 5203-19, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21791731

RESUMO

This work proposes a generic method for modeling scanned ion beam delivery systems, without simulation of the treatment nozzle and based exclusively on beam data library (BDL) measurements required for treatment planning systems (TPS). To this aim, new tools dedicated to treatment plan simulation were implemented in the Gate Monte Carlo platform. The method was applied to a dedicated nozzle from IBA for proton pencil beam scanning delivery. Optical and energy parameters of the system were modeled using a set of proton depth-dose profiles and spot sizes measured at 27 therapeutic energies. For further validation of the beam model, specific 2D and 3D plans were produced and then measured with appropriate dosimetric tools. Dose contributions from secondary particles produced by nuclear interactions were also investigated using field size factor experiments. Pristine Bragg peaks were reproduced with 0.7 mm range and 0.2 mm spot size accuracy. A 32 cm range spread-out Bragg peak with 10 cm modulation was reproduced with 0.8 mm range accuracy and a maximum point-to-point dose difference of less than 2%. A 2D test pattern consisting of a combination of homogeneous and high-gradient dose regions passed a 2%/2 mm gamma index comparison for 97% of the points. In conclusion, the generic modeling method proposed for scanned ion beam delivery systems was applicable to an IBA proton therapy system. The key advantage of the method is that it only requires BDL measurements of the system. The validation tests performed so far demonstrated that the beam model achieves clinical performance, paving the way for further studies toward TPS benchmarking. The method involves new sources that are available in the new Gate release V6.1 and could be further applied to other particle therapy systems delivering protons or other types of ions like carbon.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/instrumentação , Humanos , Dosagem Radioterapêutica
6.
Phys Med Biol ; 56(4): 903-18, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21248389

RESUMO

The GEANT4-based GATE Monte Carlo (MC) platform was initially focused on PET and SPECT simulations. The new release v6.0 (February 2010) proposes new tools dedicated for radiation therapy simulations. In this work, we investigated some part of this extension and proposed a general methodology for Linac simulations. Details of the modeling of a 6 MV photon beam delivered by an Elekta Precise Linac, with radiation fields ranging from 5 × 5 to 30 × 30 cm(2) at the isocenter are presented. Comparisons were performed with measurements in water. The simulations were performed in two stages: first, the patient-independent part was simulated and a phase space (PhS) was built above the secondary collimator. Then, a multiple source model (MSM) derived from the PhS was proposed to simulate the photon fluence interacting with the patient-dependent part. The selective bremsstrahlung splitting (SBS) variance reduction technique proposed in GATE was used in order to speed up the accelerator head simulation. Further investigations showed that the SBS can be safely used without biasing the simulations. Additional comparisons with full simulations performed on the EGEE grid, in a single stage from the electron source to the water phantom, allowed the evaluation of the MSM. The proposed MSM allowed for calculating depth dose and transverse profiles in 48 hours on a single 2.8 GHz CPU, with a statistical uncertainty of 0.8% for a 10 × 10 cm(2) radiation field, using voxels of 5 × 5 × 5 mm(3). Good agreement between simulations and measurements in water was observed, with dose differences of about 1% and 2% for depth doses and dose profiles, respectively. Additional gamma index comparisons were performed; more than 90% of the points for all simulations passed the 3%/3 mm gamma criterion. To our knowledge, this feasibility study is the first one illustrating the potential of GATE for external radiotherapy applications.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Fótons/uso terapêutico , Humanos , Radioterapia de Intensidade Modulada , Tomografia Computadorizada por Raios X
7.
Phys Med Biol ; 56(4): 881-901, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21248393

RESUMO

GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Radioterapia/métodos , Tomografia Computadorizada por Raios X/métodos , Benchmarking , Elétrons/uso terapêutico , Humanos , Movimento (Física) , Fótons/uso terapêutico , Tomografia por Emissão de Pósitrons , Terapia com Prótons , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...