Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasite Immunol ; 46(5): e13040, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801355

RESUMO

Cystic echinococcosis is caused by the tissue-dwelling larva (hydatid) of Echinococcus granulosus sensu lato. A salient feature is that this larva is protected by the acellular laminated layer (LL). As the parasite grows, the LL sheds abundant particles that can accumulate in the parasite's vicinity. The potential of LL particles to induce inflammation in vivo has not been specifically analysed. It is not known how each of its two major components, namely highly glycosylated mucins and calcium inositol hexakisphosphate (InsP6) deposits, impacts inflammation induced by the LL as a whole. In this work, we show that LL particles injected intraperitoneally cause infiltration of eosinophils, neutrophils and monocytes/macrophages as well as the disappearance of resident (large peritoneal) macrophages. Strikingly, the absence of calcium InsP6 enhanced the recruitment of all the inflammatory cell types analysed. In contrast, oxidation of the mucin carbohydrates caused decreased recruitment of neutrophils. The carbohydrate-oxidised particles caused cell influx nonetheless, which may be explained by possible receptor-independent effects of LL particles on innate immune cells, as suggested by previous works from our group. In summary, LL particles can induce acute inflammatory cell recruitment partly dependent on its mucin glycans, and this recruitment is attenuated by the calcium InsP6 component.


Assuntos
Echinococcus granulosus , Ácido Fítico , Animais , Echinococcus granulosus/imunologia , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Equinococose/imunologia , Equinococose/parasitologia , Inflamação , Neutrófilos/imunologia , Mucinas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Eosinófilos/imunologia , Feminino , Larva/imunologia
2.
Infect Immun ; 92(2): e0027623, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38174942

RESUMO

The larval stage of Echinococcus granulosus causes the chronic infection known as cystic echinococcosis, deploying strong inhibitory mechanisms on host immune responses. Using experimental intraperitoneal infection in C57BL/6 mice, we carried out an in-depth analysis of the local changes in macrophage populations associated with chronic infection. In addition, we analyzed T cells and relevant soluble mediators. Infected animals showed an increase in local cell numbers, mostly accounted for by eosinophils, T cells, and macrophages. Within macrophage populations, the largest increases in cell numbers corresponded to resident large peritoneal macrophages (LPM). Monocyte recruitment appeared to be active, as judged by the increased number of monocytes and cells in the process of differentiation towards LPM, including small (SPM) and converting peritoneal macrophages (CPM). In contrast, we found no evidence of macrophage proliferation. Infection induced the expression of M2 markers in SPM, CPM, and LPM. It also enhanced the expression of the co-inhibitor PD-L1 in LPM, SPM, and CPM and induced the co-inhibitor PD-L2 in SPM and CPM. Therefore, local macrophages acquire M2-like phenotypes with probable suppressive capacities. Regarding T cells, infection induced an increase in the percentage of CD4+ cells that are PD-1+, which represent a potential target of suppression by PD-L1+/PD-L2+ macrophages. In possible agreement, CD4+ T cells from infected animals showed blunted proliferative responses to in vitro stimulation with anti-CD3. Further evidence of immune suppression in the parasite vicinity arose from the observation of an expansion in FoxP3+ CD4+ regulatory T cells and increases in the local concentrations of the anti-inflammatory cytokines TGF-ß and IL-1Ra.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Camundongos , Antígeno B7-H1/metabolismo , Infecção Persistente , Camundongos Endogâmicos C57BL
3.
Protein Cell ; 14(2): 87-104, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36929004

RESUMO

The larval stages of the cestode parasites belonging to the genus Echinococcus grow within internal organs of humans and a range of animal species. The resulting diseases, collectively termed echinococcoses, include major neglected tropical diseases of humans and livestock. Echinococcus larvae are outwardly protected by the laminated layer (LL), an acellular structure that is unique to this genus. The LL is based on a fibrillar meshwork made up of mucins, which are decorated by galactose-rich O-glycans. In addition, in the species cluster termed E. granulosus sensu lato, the LL features nano-deposits of the calcium salt of myo-inositol hexakisphosphate (Insp6). The main purpose of our article is to update the immunobiology of the LL. Major recent advances in this area are (i) the demonstration of LL "debris" at the infection site and draining lymph nodes, (ii) the characterization of the decoy activity of calcium Insp6 with respect to complement, (iii) the evidence that the LL mucin carbohydrates interact specifically with a lectin receptor expressed in Kupffer cells (Clec4F), and (iv) the characterization of what appear to be receptor-independent effects of LL particles on dendritic cells and macrophages. Much information is missing on the immunology of this intriguing structure: we discuss gaps in knowledge and propose possible avenues for research.


Assuntos
Equinococose , Echinococcus granulosus , Echinococcus , Animais , Cálcio , Equinococose/parasitologia , Echinococcus/imunologia , Echinococcus granulosus/química , Echinococcus granulosus/imunologia , Mucinas
4.
Immunobiology ; 224(5): 710-719, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31178241

RESUMO

Persistent extracellular tissue-dwelling pathogens face the challenge of antibody-dependent activation of the classical complement pathway (CCP). A prime example of this situation is the larva of the cestode Echinococcus granulosus sensu lato, causing cystic echinococcosis. This tissue-dwelling, bladder-like larva is bounded by a cellular layer protected by the outermost acellular "laminated layer" (LL), to which host antibodies bind. The LL is made up of a mucin meshwork and interspersed nano-deposits of calcium inositol hexakisphosphate (calcium InsP6). We previously reported that calcium InsP6 bound C1q, apparently initiating CCP activation. The present work dissects CCP activation on the LL. Most of the C1 binding activity in the LL corresponded to calcium InsP6, and this binding was enhanced by partial proteolysis of the mucin meshwork. The remaining C1 binding activity was attributable to host antibodies, which included CCP-activating IgG isotypes. Calcium InsP6 made only a weak contribution to early CCP activation on the LL, suggesting inefficient C1 complex activation as reported for other polyanions. CCP activation on calcium InsP6 gave rise to a dominant population of C3b deposited onto calcium InsP6 itself that appeared to be quickly inactivated. Apparently as a result of inefficient initiation plus C3b inactivation, calcium InsP6 made no net contribution to C5 activation. We propose that the LL protects the underlying parasite cells from CCP activation through the combined effects of inefficient permeation of C1 through the mucins and C1 retention on calcium InsP6. This mechanism does not result in C5 activation, which is known to drive parasite-damaging inflammation.


Assuntos
Antígenos de Helmintos/imunologia , Via Clássica do Complemento , Proteínas do Sistema Complemento/imunologia , Echinococcus granulosus/imunologia , Ácido Fítico/imunologia , Animais , Antígenos de Helmintos/química , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Equinococose/imunologia , Equinococose/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Ácido Fítico/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...