Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 19(3): 765-771, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28116677

RESUMO

In 2000, bovine heparin was withdrawn from the US market for fear of contamination with bovine spongiform encephalopathy (BSE) agent, the cause of variant Creutzfeldt-Jakob disease in humans. Thus, US heparin is currently sourced only from pig intestines. Availability of alternative sources of crude heparin, a life-saving drug, would benefit public health. Bovine heparin is an obvious option, but BSE clearance by the bovine heparin manufacturing process should be evaluated. To this end, using hamster 263K scrapie as a surrogate for BSE agent, we applied a four-step bench-scale heparin purification protocol resembling a typical heparin manufacturing process to investigate removal of the spiked scrapie agent. We removed aliquots from each step and analyzed them for residual abnormal prion protein (PrPTSE) using a sensitive in vitro method, real-time quaking-induced conversion (RT-QuIC) assay, and for infectivity using animal bioassays. The purification process reduced infectivity by 3.6 log10 and removed PrPTSE, measured as seeding activity, by 3.4 log10. NaOH treatment was the most effective removal step tested. We also investigated NaOH at different concentrations and pH: the results showed that as much as 5.2 log10 of PrPTSE seeding activity was removed at pH 12.5. Thus, changes to the concentration, treatment time, and temperature of alkaline extraction might further improve removal. Our results, using a basic heparin manufacturing process, inform efforts to reintroduce safe bovine heparin in the USA.


Assuntos
Encefalopatia Espongiforme Bovina/prevenção & controle , Heparina/isolamento & purificação , Proteínas Priônicas/isolamento & purificação , Animais , Bovinos , Encefalopatia Espongiforme Bovina/transmissão , Intestinos/química , Mesocricetus , Scrapie/transmissão , Hidróxido de Sódio , Extratos de Tecidos
2.
Magn Reson Imaging ; 38: 234-249, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27993533

RESUMO

Blood is a physiological substance with multiple water compartments, which contain water-binding proteins such as hemoglobin in erythrocytes and albumin in plasma. Knowing the water transverse (R2) relaxation rates from these different blood compartments is a prerequisite for quantifying the blood oxygenation level-dependent (BOLD) effect. Here, we report the Carr-Purcell-Meiboom-Gill (CPMG) based transverse (R2CPMG) relaxation rates of water in bovine blood samples circulated in a perfusion system at physiological temperature in order to mimic blood perfusion in humans. R2CPMG values of blood plasma, lysed packed erythrocytes, lysed plasma/erythrocyte mixtures, and whole blood at 3 T, 7 T, 9.4 T, 11.7 T and 16.4 T were measured as a function of hematocrit or hemoglobin concentration, oxygenation, and CPMG inter-echo spacing (τcp). R2CPMG in lysed cells showed a small τcp dependence, attributed to the water exchange rate between free and hemoglobin-bound water to be much faster than τcp. This was contrary to the tangential dependence in whole blood, where a much slower exchange between cells and blood plasma applies. Whole blood data were fitted as a function of τcp using a general tangential correlation time model applicable for exchange as well as diffusion contributions to R2CPMG, and the intercept R20blood at infinitely short τcp was determined. The R20blood values at different hematocrit and the R2CPMG values of lysed erythrocyte/plasma mixtures at different hemoglobin concentration were used to determine the relaxivity of hemoglobin inside the erythrocyte (r2Hb) and albumin (r2Alb) in plasma. The r2Hb values obtained from lysed erythrocytes and whole blood were comparable at full oxygenation. However, while r2Hb determined from lysed cells showed a linear dependence on oxygenation, this dependence became quadratic in whole blood. This possibly suggests an additional relaxation effect inside intact cells, perhaps due to hemoglobin proximity to the erythrocyte membrane. However, we cannot exclude that this is a consequence of the simple tangential model used to remove relaxation contributions from exchange and diffusion. The extensive data set presented should be useful for future theory development for the transverse relaxation of blood.


Assuntos
Eritrócitos , Hemoglobinas/análise , Espectroscopia de Ressonância Magnética , Albuminas/química , Animais , Água Corporal/metabolismo , Bovinos , Difusão , Hematócrito , Humanos , Campos Magnéticos , Perfusão , Plasma/metabolismo , Temperatura , Água
3.
Magn Reson Med ; 76(1): 270-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26285144

RESUMO

PURPOSE: To propose and evaluate a model for the blood water T1 that takes into account the effects of hematocrit fraction, oxygenation fraction, erythrocyte hemoglobin concentration, methemoglobin fraction, and plasma albumin concentration. METHODS: Whole blood and lysed blood T1 data were acquired at magnetic fields of 3 Tesla (T), 7T, 9.4T, and 11.7T using inversion-recovery measurements and a home-built blood circulation system for maintaining physiological conditions. A quantitative model was derived based on multivariable fitting of this data. RESULTS: Fitting of the model to the data allowed determination of the different parameters describing the blood water T1 such as those for the diamagnetic and paramagnetic effects of albumin and hemoglobin, and the contribution of methemoglobin. The model correctly predicts blood T1 at multiple fields, as verified by comparison with existing literature. CONCLUSION: The model provides physical and physiological parameters describing the effects of hematocrit fraction, oxygenation, hemoglobin concentration, methemoglobin fraction, and albumin concentration on blood water T1 . It can be used to predict blood T1 at multiple fields. Magn Reson Med 76:270-281, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Análise Química do Sangue , Água Corporal/química , Eritrócitos/química , Hemoglobinas/química , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Modelos Químicos , Oxigênio/química , Animais , Bovinos , Simulação por Computador , Hematócrito
4.
Magn Reson Med ; 72(3): 823-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975029

RESUMO

PURPOSE: Demonstrate applicability of natural D-glucose as a T2 MRI contrast agent. METHODS: D-glucose solutions were prepared at multiple concentrations and variable pH. The relaxation rate (R2 = 1/T2 ) was measured at 3, 7, and 11.7 T. Additional experiments were performed on blood at 11.7 T. Also, a mouse was infused with D-glucose (3.0 mmol/kg) and dynamic T2 weighted images of the abdomen acquired. RESULTS: The transverse relaxation rate depended strongly on glucose concentration and solution pH. A maximum change in R2 was observed around physiological pH (pH 6.8-7.8). The transverse relaxivities at 22°C (pH 7.3) were 0.021, 0.060, and 0.077 s(-1) mM(-1) at 3.0, 7.0, and 11.7 T, respectively. These values showed good agreement with expected values from the Swift-Connick equation. There was no significant dependence on glucose concentration or pH for T1 and the diffusion coefficient for these solutions. The transverse relaxivity in blood at 11.7 T was 0.09 s(-1) mM(-1) . The dynamic in vivo experiment showed a 10% drop in signal intensity after glucose infusion followed by recovery of the signal intensity after about 50-100 s. CONCLUSION: Glucose can be used as a T2 contrast agent for MRI at concentrations that are already approved for human use.


Assuntos
Meios de Contraste , Desoxiglucose , Imageamento por Ressonância Magnética/métodos , Abdome , Animais , Bovinos , Meios de Contraste/química , Desoxiglucose/química , Eritrócitos/metabolismo , Concentração de Íons de Hidrogênio , Aumento da Imagem/métodos , Camundongos , Camundongos Endogâmicos BALB C , Imagens de Fantasmas
5.
Magn Reson Med ; 70(4): 1153-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23169066

RESUMO

Knowledge of blood (1)H2O T1 is critical for perfusion-based quantification experiments such as arterial spin labeling and cerebral blood volume-weighted MRI using vascular space occupancy. The dependence of blood (1)H2O T1 on hematocrit fraction (Hct) and oxygen saturation fraction (Y) was determined at 7 T using in vitro bovine blood in a circulating system under physiological conditions. Blood (1)H2O R1 values for different conditions could be readily fitted using a two-compartment (erythrocyte and plasma) model, which are described by a monoexponential longitudinal relaxation rate constant dependence. It was found that T1 = 2171 ± 39 ms for Y = 1 (arterial blood) and 2010 ± 41 ms for Y = 0.6 (venous blood), for a typical Hct of 0.42. The blood (1)H2O T1 values in the normal physiological range (Hct from 0.35 to 0.45, and Y from 0.6 to 1.0) were determined to range from 1900 to 2300 ms. The influence of oxygen partial pressure (pO2) and the effect of plasma osmolality for different anticoagulants were also investigated. It is discussed why blood (1)H2O T1 values measured in vivo for human blood may be about 10-20% larger than found in vitro for bovine blood at the same field strength.


Assuntos
Água Corporal/metabolismo , Deutério/farmacocinética , Eritrócitos/metabolismo , Hematócrito/métodos , Hemoglobinas/metabolismo , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Animais , Bovinos , Células Cultivadas , Eritrócitos/patologia , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Magn Reson Med ; 67(1): 42-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21590721

RESUMO

Recently, a T(2) -Relaxation-Under-Spin-Tagging (TRUST) MRI technique was developed to quantitatively estimate blood oxygen saturation fraction (Y) via the measurement of pure blood T(2) . This technique has shown promise for normalization of fMRI signals, for the assessment of oxygen metabolism, and in studies of cognitive aging and multiple sclerosis. However, a human validation study has not been conducted. In addition, the calibration curve used to convert blood T(2) to Y has not accounted for the effects of hematocrit (Hct). In this study, we first conducted experiments on blood samples under physiologic conditions, and the Carr-Purcell-Meiboom-Gill T(2) was determined for a range of Y and Hct values. The data were fitted to a two-compartment exchange model to allow the characterization of a three-dimensional plot that can serve to calibrate the in vivo data. Next, in a validation study in humans, we showed that arterial Y estimated using TRUST MRI was 0.837 ± 0.036 (N=7) during the inhalation of 14% O2, which was in excellent agreement with the gold-standard Y values of 0.840 ± 0.036 based on Pulse-Oximetry. These data suggest that the availability of this calibration plot should enhance the applicability of T(2) -Relaxation-Under-Spin-Tagging MRI for noninvasive assessment of cerebral blood oxygenation.


Assuntos
Encéfalo/fisiologia , Circulação Cerebrovascular , Interpretação de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Oxigênio/sangue , Algoritmos , Velocidade do Fluxo Sanguíneo , Encéfalo/irrigação sanguínea , Calibragem , Aumento da Imagem/métodos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
7.
Magn Reson Med ; 65(2): 471-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21264936

RESUMO

The oxygen extraction fraction of the brain reports on the balance between oxygen delivery and consumption and can be used to assess deviations in physiological homeostasis. This is relevant clinically as well as for calibrating blood oxygen level-dependent functional MRI responses. Oxygen extraction fraction is reflected in the arteriovenous difference in oxygen saturation fraction (Y(v) - Y(a) ), which can be determined from venous T(2) values when arterial oxygenation is known. A pulse sequence is presented that allows rapid measurement (<1 min) of blood T(2) s in the internal jugular vein. The technique combines slice-saturation and blood inflow to attain high signal-to-noise ratio in blood and minimal contamination from tissue. The sequence is sensitized to T(2) using a nonselective Carr-Purcell-Meiboom-Gill T(2) preparation directly after slice saturation. Fast scanning (pulse repetition time of about 2 sec) is possible by using a nonselective saturation directly after acquisition to rapidly achieve steady-state longitudinal magnetization. The venous T(2) (for 10 msec Carr-Purcell-Meiboom-Gill interecho time) for normal volunteers was 62.4 ± 6.1 msec (n = 20). A calibration curve relating T(2) to blood oxygenation was established using a blood perfusion phantom. Using this calibration, a whole-brain oxygen extraction fraction of 0.37 ± 0.04 was determined (n = 20), in excellent agreement with literature values.


Assuntos
Encéfalo/metabolismo , Veias Jugulares , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio , Oxigênio/sangue , Adulto , Animais , Bovinos , Circulação Cerebrovascular , Feminino , Humanos , Técnicas In Vitro , Angiografia por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Adulto Jovem
8.
Magn Reson Med ; 61(4): 944-51, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19215043

RESUMO

Vascular-space-occupancy (VASO) MRI is a novel technique that uses blood signal nulling to detect blood volume alterations through changes in tissue signal. VASO has relatively low signal to noise ratio (SNR) because only 10-20% of tissue signal remain at the time of blood nulling. Here, it is shown that by adding a magnetization transfer (MT) prepulse it is possible to increase SNR either by attenuating the initial tissue magnetization when the MT pulse is placed before inversion, or, accelerating the recovery process when the pulse is applied after the inversion. To test whether the MT pulse would affect the blood nulling time in VASO, MT effects in blood were measured both ex vivo in a bovine blood phantom and in vivo in human brain. Such effects were found to be sufficiently small (<2.5%) under a saturation power or=40 ppm to allow use of the same nulling time. Subsequently, functional MRI experiments using MT-VASO were performed in human visual cortex at 3 Tesla. The relative signal changes in MT-VASO were of the same magnitude as in VASO, while the contrast to noise ratio (CNR) was enhanced by 44+/-12% and 36+/-11% respectively. Therefore, MT-VASO should provide a means for increasing inherently low CNR in VASO experiments while preserving the CBV sensitivity.


Assuntos
Algoritmos , Velocidade do Fluxo Sanguíneo/fisiologia , Mapeamento Encefálico/métodos , Circulação Cerebrovascular/fisiologia , Potenciais Evocados Visuais/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Visual/fisiologia , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Córtex Visual/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...