Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35079792

RESUMO

Morphogenesis, the formation of three-dimensional organ structures, requires precise coupling of genetic regulation and complex cell behaviors. The genetic networks governing many morphogenetic systems, including that of the embryonic eye, are poorly understood. In zebrafish, several forward genetic screens have sought to identify factors regulating eye development. These screens often look for eye defects at stages after the optic cup is formed and when retinal neurogenesis is under way. This approach can make it difficult to identify mutants specific for morphogenesis, as opposed to neurogenesis. To this end, we carried out a forward genetic, small-scale haploid mutagenesis screen in zebrafish (Danio rerio) to identify factors that govern optic cup morphogenesis. We screened ∼100 genomes and isolated shutdown corner (sco), a mutant that exhibits multiple tissue defects and harbors a ∼10-Mb deletion that encompasses 89 annotated genes. Using a combination of live imaging and antibody staining, we found cell proliferation, cell death, and tissue patterning defects in the sco optic cup. We also observed other phenotypes, including paralysis, neuromuscular defects, and ocular vasculature defects. To date, the largest deletion mutants reported in zebrafish are engineered using CRISPR-Cas9 and are less than 300 kb. Because of the number of genes within the deletion interval, shutdown corner [Df(Chr05:sco)z207] could be a useful resource to the zebrafish community, as it may be helpful for gene mapping, understanding genetic interactions, or studying many genes lost in the mutant.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Haploidia , Morfogênese/genética , Mutagênese/genética , Mutação , Neurogênese/genética , Retina , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Dev Dyn ; 238(11): 2929-35, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19842185

RESUMO

Dbx homeodomain proteins are important for the production of multiple spinal cord cell types. To examine the regulation of Dbx genes in more detail, we have generated transgenic zebrafish in which fluorescent protein expression is driven by predicted dbx1a enhancers. We identified three areas of sequence conservation upstream of the dbx1a coding sequence and generated fluorescent reporter constructs driven by these predicted enhancer elements and the endogenous dbx1a promoter. In multiple stable insertions of a 3.5-kb enhancer fragment, we observed that there was additional reporter expression in the dorsal spinal cord not normally observed by dbx1a in situ hybridization. In addition, these lines exhibited only transient reporter expression, unlike the endogenous gene. Surprisingly, a single insertion line expressed the reporter in the endogenous pattern, indicating that other local regulatory elements modulate gene expression through the 3.5-kb enhancer.


Assuntos
Embrião não Mamífero/embriologia , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Medula Espinal/embriologia , Fatores de Transcrição/genética , Transgenes/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Cromossomos , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Genes Reporter/genética , Genes Reporter/fisiologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Medula Espinal/metabolismo , Transgenes/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Development ; 136(5): 781-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19176587

RESUMO

The Lef/Tcf factor Tcf3 is expressed throughout the developing vertebrate central nervous system (CNS), but its function and transcriptional targets are uncharacterized. Tcf3 is thought to mediate canonical Wnt signaling, which functions in CNS patterning, proliferation and neurogenesis. In this study, we examine Tcf3 function in the zebrafish spinal cord, and find that this factor does not play a general role in patterning, but is required for the proper expression of Dbx genes in intermediate progenitors. In addition, we show that Tcf3 is required to inhibit premature neurogenesis in spinal progenitors by repressing sox4a, a known mediator of spinal neurogenesis. Both of these functions are mediated by Tcf3 independently of canonical Wnt signaling. Together, our data indicate a novel mechanism for the regulation of neurogenesis by Tcf3-mediated repression.


Assuntos
Neurogênese/fisiologia , Fatores de Transcrição SOXC/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo , Fatores de Transcrição TCF/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proliferação de Células , Primers do DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição SOXC/genética , Transdução de Sinais , Medula Espinal/citologia , Fatores de Transcrição TCF/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição , Peixe-Zebra/genética , Zigoto/metabolismo
4.
Dev Biol ; 313(1): 398-407, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18062957

RESUMO

Canonical Wnt signaling can regulate proliferation and patterning in the developing spinal cord, but the relationship between these functions has remained elusive. It has been difficult to separate the distinct activities of Wnts because localized changes in proliferation could conceivably alter patterning, and gain and loss of function experiments have resulted in both types of defects. To resolve this issue we have investigated canonical Wnt signaling in the zebrafish spinal cord using multiple approaches. We demonstrate that Wnt signaling is required initially for proliferation throughout the entire spinal cord, and later for patterning dorsal progenitor domains. Furthermore, we find that spinal cord patterning is normal in embryos after cell division has been pharmacologically blocked. Finally, we determine the transcriptional mediators of Wnt signaling that are responsible for patterning and proliferation. We show that tcf7 gene knockdown results in dorsal patterning defects without decreasing the mitotic index in dorsal domains. In contrast, tcf3 gene knockdown results in a reduced mitotic index without affecting dorsal patterning. Together, our work demonstrates that proliferation and patterning in the developing spinal cord are separable events that are regulated independently by Wnt signaling.


Assuntos
Transdução de Sinais , Medula Espinal/embriologia , Medula Espinal/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Padronização Corporal , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
Dev Dyn ; 236(12): 3472-83, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17994542

RESUMO

Dbx homeodomain proteins are important for spinal cord dorsal/ventral patterning and the production of multiple spinal cord cell types. We have examined the regulation and function of Dbx genes in the zebrafish. We report that Hedgehog signaling is not required for the induction or maintenance of these genes; in the absence of Hedgehog signaling, dbx1a/1b/2 are expanded ventrally with concomitant increases in postmitotic neurons that differentiate from this domain. Also, we find that retinoic acid signaling is not required for the induction of Dbx expression. Furthermore, we are the first to report that knockdown of Dbx1 function causes a dorsal expansion of nkx6.2, which is thought to be the cross-repressive partner of Dbx1 in mouse. Our data confirm that the dbx1a/1b/2 domain in zebrafish spinal cord development behaves similarly to amniotes, while extending knowledge of Dbx1 function in spinal cord patterning.


Assuntos
Genes Homeobox , Medula Espinal/embriologia , Medula Espinal/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Sequência de Bases , Padronização Corporal/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligodesoxirribonucleotídeos Antissenso/genética , Transdução de Sinais , Medula Espinal/citologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Tretinoína/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA