Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 271(1): 91-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14652738

RESUMO

Retrotransposon-based molecular markers have been developed to study bread wheat ( Triticum aestivum) and its wild relatives. SSAP (Sequence-Specific Amplification Polymorphism) markers based on the BARE-1/ Wis-2-1A retrotransposons were assigned to T. aestivum chromosomes by scoring nullisomic-tetrasomic chromosome substitution lines. The markers are distributed among all wheat chromosomes, with the lowest proportion being assigned the D wheat genome. SSAP markers for BARE-1/ Wis-2-1A and three other wheat retrotransposons, Thv19, Tagermina and Tar1, are broadly distributed on a wheat linkage map. Polymorphism levels associated with these four retrotransposons vary, with BARE-1/ Wis-2-1A and Thv19 both showing approximately 13% of bands polymorphic in a mapping population, Tagermina showing approximately 17% SSAP band polymorphism and Tar1 roughly 18%. This suggests that Tagermina and Tar1 have been more transpositionally active in the recent evolutionary past, and are potentially the more useful source of molecular markers in wheat. Lastly, BARE-1 / Wis-2-1A markers have also been used to characterise the genetic diversity among a set of 35 diploid and tetraploid wheat species including 26 Aegilops and 9 Triticum accessions. The SSAP-based diversity tree for Aegilops species agrees well with current classifications, though the Triticum tree shows several significant differences, which may be associated with polyploidy in this genus.


Assuntos
Retroelementos/genética , Triticum/genética , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Variação Genética , Filogenia , Polimorfismo Genético , Especificidade da Espécie
2.
Mol Gen Genet ; 261(6): 883-91, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10485278

RESUMO

The Ty1-copia group retrotransposon populations of barley (Hordeum vulgare) and bread wheat (Triticum aestivum) have been characterised by degenerate PCR and sequence analysis of fragments of the reverse transcriptase genes. The barley population is comprised of a highly heterogeneous set of retrotransposons, together with a collection of sequences that are closely related to the BARE-1 element. Wheat also contains a highly diverse Ty1-copia retrotransposon population, together with a less prominent BARE-1 subgroup. These data have been combined with previously published Gramineae sequences to construct a composite phylogenetic tree for this class of retrotransposons in cereal grasses. The analysis indicates that the ancestral Gramineae genome contained a heterogeneous population of Ty1-copia group retrotransposons, the descendants of which have proliferated to differing degrees in present-day species. Lastly, the level of recent transpositional activity of two Ty1-copia elements has been estimated by measuring their insertional polymorphism within species. Both transposons are highly polymorphic within all species tested. These data suggest that transposition proficiency may be a common and evolutionarily stable feature of the Ty1-copia group retrotransposons of cereal grasses.


Assuntos
Genoma de Planta , Hordeum/genética , Filogenia , Retroelementos , Triticum/genética , Sequência de Bases , Primers do DNA , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA