Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 71, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208375

RESUMO

Group B streptococcus (GBS) is a leading cause of neonatal morbidity and mortality worldwide. Development of a maternal vaccine to protect newborns through placentally transferred antibody is considered feasible based on the well-established relationship between anti-GBS capsular polysaccharide (CPS) IgG levels at birth and reduced risk of neonatal invasive GBS. An accurately calibrated serum reference standard that can be used to measure anti-CPS concentrations is critical for estimation of protective antibody levels across serotypes and potential vaccine performance. For this, precise weight-based measurement of anti-CPS IgG in sera is required. Here, we report an improved approach for determining serum anti-CPS IgG levels using surface plasmon resonance with monoclonal antibody standards, coupled with a direct Luminex-based immunoassay. This technique was used to quantify serotype-specific anti-CPS IgG levels in a human serum reference pool derived from subjects immunized with an investigational six-valent GBS glycoconjugate vaccine.

2.
Sci Transl Med ; 15(693): eade6422, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37023209

RESUMO

Respiratory syncytial virus (RSV) is the leading, global cause of serious respiratory disease in infants and is an important cause of respiratory illness in older adults. No RSV vaccine is currently available. The RSV fusion (F) glycoprotein is a key antigen for vaccine development, and its prefusion conformation is the target of the most potent neutralizing antibodies. Here, we describe a computational and experimental strategy for designing immunogens that enhance the conformational stability and immunogenicity of RSV prefusion F. We obtained an optimized vaccine antigen after screening nearly 400 engineered F constructs. Through in vitro and in vivo characterization studies, we identified F constructs that are more stable in the prefusion conformation and elicit ~10-fold higher serum-neutralizing titers in cotton rats than DS-Cav1. The stabilizing mutations of the lead construct (847) were introduced onto F glycoprotein backbones of strains representing the dominant circulating genotypes of the two major RSV subgroups, A and B. Immunization of cotton rats with a bivalent vaccine formulation of these antigens conferred complete protection against RSV challenge, with no evidence of disease enhancement. The resulting bivalent RSV prefusion F investigational vaccine has recently been shown to be efficacious against RSV disease in two pivotal phase 3 efficacy trials, one for passive protection of infants by immunization of pregnant women and the second for active protection of older adults by direct immunization.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Gravidez , Feminino , Humanos , Animais , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/genética , Glicoproteínas , Sigmodontinae , Proteínas Virais de Fusão/genética
3.
mBio ; 13(4): e0086922, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862764

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to represent a global health emergency as a highly transmissible, airborne virus. An important coronaviral drug target for treatment of COVID-19 is the conserved main protease (Mpro). Nirmatrelvir is a potent Mpro inhibitor and the antiviral component of Paxlovid. The significant viral sequencing effort during the ongoing COVID-19 pandemic represented a unique opportunity to assess potential nirmatrelvir escape mutations from emerging variants of SARS-CoV-2. To establish the baseline mutational landscape of Mpro prior to the introduction of Mpro inhibitors, Mpro sequences and its cleavage junction regions were retrieved from ~4,892,000 high-quality SARS-CoV-2 genomes in the open-access Global Initiative on Sharing Avian Influenza Data (GISAID) database. Any mutations identified from comparison to the reference sequence (Wuhan-Hu-1) were catalogued and analyzed. Mutations at sites key to nirmatrelvir binding and protease functionality (e.g., dimerization sites) were still rare. Structural comparison of Mpro also showed conservation of key nirmatrelvir contact residues across the extended Coronaviridae family (α-, ß-, and γ-coronaviruses). Additionally, we showed that over time, the SARS-CoV-2 Mpro enzyme remained under purifying selection and was highly conserved relative to the spike protein. Now, with the emergency use authorization (EUA) of Paxlovid and its expected widespread use across the globe, it is essential to continue large-scale genomic surveillance of SARS-CoV-2 Mpro evolution. This study establishes a robust analysis framework for monitoring emergent mutations in millions of virus isolates, with the goal of identifying potential resistance to present and future SARS-CoV-2 antivirals. IMPORTANCE The recent authorization of oral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antivirals, such as Paxlovid, has ushered in a new era of the COVID-19 pandemic. The emergence of new variants, as well as the selective pressure imposed by antiviral drugs themselves, raises concern for potential escape mutations in key drug binding motifs. To determine the potential emergence of antiviral resistance in globally circulating isolates and its implications for the clinical response to the COVID-19 pandemic, sequencing of SARS-CoV-2 viral isolates before, during, and after the introduction of new antiviral treatments is critical. The infrastructure built herein for active genetic surveillance of Mpro evolution and emergent mutations will play an important role in assessing potential antiviral resistance as the pandemic progresses and Mpro inhibitors are introduced. We anticipate our framework to be the starting point in a larger effort for global monitoring of the SARS-CoV-2 Mpro mutational landscape.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais/metabolismo , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Combinação de Medicamentos , Humanos , Lactamas , Leucina , Nitrilas , Pandemias , Prolina , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ritonavir , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo
4.
Biochemistry ; 60(40): 2987-3006, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605636

RESUMO

During the life cycle of enteric bacterium Escherichia coli, it encounters a wide spectrum of pH changes. The asymmetric dimer of the cAMP receptor protein, CRP, plays a key role in regulating the expressions of genes and the survival of E. coli. To elucidate the pH effects on the mechanism of signal transmission, we present a combination of results derived from ITC, crystallography, and computation. CRP responds to a pH change by inducing a differential effect on the affinity for the binding events to the two cAMP molecules, ensuing in a reversible conversion between positive and negative cooperativity at high and low pH, respectively. The structures of four crystals at pH ranging from 7.8 to 6.5 show that CRP responds by inducing a differential effect on the structures of the two subunits, particularly in the DNA binding domain. Employing the COREX/BEST algorithm, computational analysis shows the change in the stability of residues at each pH. The change in residue stability alters the connectivity between residues including those in cAMP and DNA binding sites. Consequently, the differential impact on the topology of the connectivity surface among residues in adjacent subunits is the main reason for differential change in affinity; that is, the pH-induced differential change in residue stability is the biothermodynamic basis for the change in allosteric behavior. Furthermore, the structural asymmetry of this homodimer amplifies the differential impact of any perturbations. Hence, these results demonstrate that the combination of these approaches can provide insights into the underlying mechanism of an apparent complex allostery signal and transmission in CRP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Receptores de AMP Cíclico/metabolismo , Algoritmos , Regulação Alostérica , Sítios de Ligação , AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio , Modelos Químicos , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Receptores de AMP Cíclico/química , Termodinâmica
5.
mSphere ; 3(4)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021878

RESUMO

Staphylococcus aureus is a human pathogen that has developed several approaches to evade the immune system, including a strategy to resist oxidative killing by phagocytes. This resistance is mediated by production of superoxide dismutase (SOD) enzymes which use manganese as a cofactor. S. aureus encodes two manganese ion transporters, MntABC and MntH, and a possible Nramp family manganese transporter, exemplified by S. aureus N315 SA1432. Their relative contributions to manganese transport have not been well defined in clinically relevant isolates. For this purpose, insertional inactivation mutations were introduced into mntC, mntH, and SA1432 individually and in combination. mntC was necessary for full resistance to methyl viologen, a compound that generates intracellular free radicals. In contrast, strains with an intact mntH gene had a minimal increase in resistance that was revealed only in mntC strains, and no change was observed upon mutation of SA1432 in strains lacking both mntC and mntH Similarly, MntC alone was required for high cellular SOD activity. In addition, mntC strains were attenuated in a murine sepsis model. To further link these observations to manganese transport, an S. aureus MntC protein lacking manganese binding activity was designed, expressed, and purified. While circular dichroism experiments demonstrated that the secondary and tertiary structures of this protein were unaltered, a defect in manganese binding was confirmed by isothermal titration calorimetry. Unlike complementation with wild-type mntC, introduction of the manganese-binding defective allele into the chromosome of an mntC strain did not restore resistance to oxidative stress or virulence. Collectively, these results underscore the importance of MntC-dependent manganese transport in S. aureus oxidative stress resistance and virulence.IMPORTANCE Work outlined in this report demonstrated that MntC-dependent manganese transport is required for S. aureus virulence. These study results support the model that MntC-specific antibodies elicited by a vaccine have the potential to disrupt S. aureus manganese transport and thus abrogate to its virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Manganês/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Estresse Oxidativo , Staphylococcus aureus/enzimologia , Estresse Fisiológico , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Proteínas de Membrana Transportadoras/genética , Camundongos , Mutagênese Insercional , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência , Fatores de Virulência/genética
6.
mBio ; 9(2)2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535195

RESUMO

Bivalent rLP2086 (Trumenba), a vaccine for prevention of Neisseria meningitidis serogroup B (NmB) disease, was licensed for use in adolescents and young adults after it was demonstrated that it elicits antibodies that initiate complement-mediated killing of invasive NmB isolates in a serum bactericidal assay with human complement (hSBA). The vaccine consists of two factor H binding proteins (fHBPs) representing divergent subfamilies to ensure broad coverage. Although it is the surrogate of efficacy, an hSBA is not suitable for testing large numbers of strains in local laboratories. Previously, an association between the in vitro fHBP surface expression level and the susceptibility of NmB isolates to killing was observed. Therefore, a flow cytometric meningococcal antigen surface expression (MEASURE) assay was developed and validated by using an antibody that binds to all fHBP variants from both fHBP subfamilies and accurately quantitates the level of fHBP expressed on the cell surface of NmB isolates with mean fluorescence intensity as the readout. Two collections of invasive NmB isolates (n = 1,814, n = 109) were evaluated in the assay, with the smaller set also tested in hSBAs using individual and pooled human serum samples from young adults vaccinated with bivalent rLP2086. From these data, an analysis based on fHBP variant prevalence in the larger 1,814-isolate set showed that >91% of all meningococcal serogroup B isolates expressed sufficient levels of fHBP to be susceptible to bactericidal killing by vaccine-induced antibodies.IMPORTANCE Bivalent rLP2086 (Trumenba) vaccine, composed of two factor H binding proteins (fHBPs), was recently licensed for the prevention of N. meningitidis serogroup B (NmB) disease in individuals 10 to 25 years old in the United States. This study evaluated a large collection of NmB isolates from the United States and Europe by using a flow cytometric MEASURE assay to quantitate the surface expression of the vaccine antigen fHBP. We find that expression levels and the proportion of strains above the level associated with susceptibility in an hSBA are generally consistent across these geographic regions. Thus, the assay can be used to predict which NmB isolates are susceptible to killing in the hSBA and therefore is able to demonstrate an fHBP vaccine-induced bactericidal response. This work significantly advances our understanding of the potential for bivalent rLP2086 to provide broad coverage against diverse invasive-disease-causing NmB isolates.


Assuntos
Antibacterianos/farmacologia , Anticorpos Antibacterianos/farmacologia , Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Vacinas Meningocócicas/imunologia , Viabilidade Microbiana/efeitos dos fármacos , Neisseria meningitidis Sorogrupo B/efeitos dos fármacos , Neisseria meningitidis Sorogrupo B/fisiologia , Atividade Bactericida do Sangue , Citometria de Fluxo/métodos , Humanos , Neisseria meningitidis Sorogrupo B/química , Neisseria meningitidis Sorogrupo B/isolamento & purificação
7.
Biochem Biophys Rep ; 9: 193-202, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28956005

RESUMO

Inactivation of bacterial toxins for use in human vaccines traditionally is achieved by treatment with formaldehyde. In contrast, the bivalent experimental vaccine for the prevention of C. difficile infections (CDI) that is currently being evaluated in clinical trials was produced using a different strategy. C. difficile toxins A and B were inactivated using site-directed mutagenesis and treatment with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride/N-hydroxysulfosuccinimide (EDC/NHS). In the present work we investigate the effect of genetic and chemical modifications on the structure of inactivated toxins (toxoids) A and B. The far-UV circular dichroism (CD) spectra of wild type toxins, mutated toxins, and EDC/NHS-inactivated toxoids reveal that the secondary structure of all proteins is very similar. The near-UV CD spectra show that aromatic residues of all proteins are in a unique asymmetric environment, indicative of well-defined tertiary structure. These results along with the fluorescence emission maxima of 335 nm observed for all proteins suggest that the tertiary structure of toxoids A and B is preserved as well. Analytical ultracentrifugation data demonstrate that all proteins are predominantly monomeric with small fractions of higher molecular weight oligomeric species present in toxoids A and B. Differential scanning calorimetry data reveal that genetic mutations induce thermal destabilization of protein structures. Subsequent treatment with EDC/NHS results either in a minimal (1 °C) increase of apparent thermostability (toxoid B) or no change at all (toxoid A). Therefore, our two-step inactivation strategy is an effective approach for the preparation of non-toxic proteins maintaining native-like structure and conformation.

8.
PLoS Pathog ; 12(9): e1005908, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27689696

RESUMO

The Staphylococcus aureus manganese transporter protein MntC is under investigation as a component of a prophylactic S.aureus vaccine. Passive immunization with monoclonal antibodies mAB 305-78-7 and mAB 305-101-8 produced using MntC was shown to significantly reduce S. aureus burden in an infant rat model of infection. Earlier interference mapping suggested that a total of 23 monoclonal antibodies generated against MntC could be subdivided into three interference groups, representing three independent immunogenic regions. In the current work binding epitopes for selected representatives of each of these interference groups (mAB 305-72-5 - group 1, mAB 305-78-7 - group 2, and mAB 305-101-8 - group 3) were mapped using Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS). All of the identified epitopes are discontinuous, with binding surface formed by structural elements that are separated within the primary sequence of the protein but adjacent in the context of the three-dimensional structure. The approach was validated by co-crystallizing the Fab fragment of one of the antibodies (mAB 305-78-7) with MntC and solving the three-dimensional structure of the complex. X-ray results themselves and localization of the mAB 305-78-7 epitope were further validated using antibody binding experiments with MntC variants containing substitutions of key amino acid residues. These results provided insight into the antigenic properties of MntC and how these properties may play a role in protecting the hostagainst S. aureus infection by preventing the capture and transport of Mn2+, a key element that the pathogen uses to evade host immunity.

9.
J Mol Biol ; 425(18): 3429-45, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-23827136

RESUMO

MntC is a metal-binding protein component of the Mn²âº-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensional structure of the protein was solved by X-ray crystallography at 2.2Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn²âº-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn²âº-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium-hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn²âº.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Manganês/metabolismo , Proteínas Periplásmicas de Ligação/química , Staphylococcus aureus , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos de Superfície/química , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Fenômenos Biofísicos , Calorimetria/métodos , Dicroísmo Circular , Cristalografia por Raios X , Medição da Troca de Deutério , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Ligação Proteica , Conformação Proteica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
10.
J Biol Chem ; 287(47): 39402-11, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23035121

RESUMO

Transduction of biological signals at the molecular level involves the activation and/or inhibition of allosteric proteins. In the transcription factor cAMP receptor protein (CRP) from Escherichia coli, the allosteric activation, or apo-holo transition, involves rigid body motions of domains and structural rearrangements within the hinge region connecting the cAMP- and DNA-binding domains. During this apo-holo transition, residue 138 is converted as part of the elongated D-helix to the position of the N-terminal capping residue of a shorter D-helix. The goal of the current study is to elucidate the role of residue 138 in modulating the allostery between cAMP and DNA binding. By systematically mutating residue 138, we found that mutants with higher N-terminal capping propensities lead to increased cooperativity of cAMP binding and a concomitant increase in affinity for lac-DNA. Furthermore, mutants with higher N-terminal capping propensity correlate with properties characteristic of holo-CRP, particularly, increase in protein structural dynamics. Overall, our results provide a quantitative characterization of the role of residue 138 in the isomerization equilibrium between the apo and holo forms of CRP, and in turn the thermodynamic underpin to the molecular model of allostery revealed by the high resolution structural studies.


Assuntos
Proteína Receptora de AMP Cíclico/química , AMP Cíclico/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Simulação de Dinâmica Molecular , Regulação Alostérica/fisiologia , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
11.
J Am Chem Soc ; 133(27): 10599-611, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21615172

RESUMO

Lead is a potent environmental toxin that mimics the effects of divalent metal ions, such as zinc and calcium, in the context of specific molecular targets and signaling processes. The molecular mechanism of lead toxicity remains poorly understood. The objective of this work was to characterize the effect of Pb(2+) on the structure and membrane-binding properties of C2α. C2α is a peripheral membrane-binding domain of Protein Kinase Cα (PKCα), which is a well-documented molecular target of lead. Using NMR and isothermal titration calorimetry (ITC) techniques, we established that C2α binds Pb(2+) with higher affinity than its natural cofactor, Ca(2+). To gain insight into the coordination geometry of protein-bound Pb(2+), we determined the crystal structures of apo and Pb(2+)-bound C2α at 1.9 and 1.5 Å resolution, respectively. A comparison of these structures revealed that the metal-binding site is not preorganized and that rotation of the oxygen-donating side chains is required for the metal coordination to occur. Remarkably, we found that holodirected and hemidirected coordination geometries for the two Pb(2+) ions coexist within a single protein molecule. Using protein-to-membrane Förster resonance energy transfer (FRET) spectroscopy, we demonstrated that Pb(2+) displaces Ca(2+) from C2α in the presence of lipid membranes through the high-affinity interaction with the membrane-unbound C2α. In addition, Pb(2+) associates with phosphatidylserine-containing membranes and thereby competes with C2α for the membrane-binding sites. This process can contribute to the inhibitory effect of Pb(2+) on the PKCα activity.


Assuntos
Membrana Celular/química , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/química , Sítios de Ligação , Cálcio/química , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica , Conformação Proteica
12.
Assay Drug Dev Technol ; 9(1): 88-91, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21133673

RESUMO

It has been reported by Zhang et al. that antidiabetic sulfonylurea drugs promote insulin secretion by directly binding to exchange protein directly activated by cyclic AMP isoform 2 (Epac2) and activating its down-stream effector Rap1. However, a critical link for an unambiguous validation of a direct interaction between Epac2 and sulfonylurea using purified individual components is missing. Our in vitro analyses using purified full-length Epac2 and Rap1 suggest that sulfonylureas are not able to directly bind to Epac2, nor are they capable of triggering Epac2-dependent Rap1 activation.


Assuntos
Proteínas de Transporte/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipoglicemiantes/metabolismo , Compostos de Sulfonilureia/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Glicemia/análise , Células COS , Proteínas de Transporte/genética , Linhagem Celular , Chlorocebus aethiops , Transferência Ressonante de Energia de Fluorescência , Glucose/administração & dosagem , Glibureto/metabolismo , Glibureto/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia , Tolbutamida/metabolismo , Tolbutamida/farmacologia , Proteínas rap1 de Ligação ao GTP/metabolismo
13.
Proc Natl Acad Sci U S A ; 106(8): 2601-6, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19196981

RESUMO

Here, we report the application of a computational approach that allows the rational design of enzymes with enhanced thermostability while retaining full enzymatic activity. The approach is based on the optimization of the energy of charge-charge interactions on the protein surface. We experimentally tested the validity of the approach on 2 human enzymes, acylphosphatase (AcPh) and Cdc42 GTPase, that differ in size (98 vs. 198-aa residues, respectively) and tertiary structure. We show that the designed proteins are significantly more stable than the corresponding WT proteins. The increase in stability is not accompanied by significant changes in structure, oligomerization state, or, most importantly, activity of the designed AcPh or Cdc42. This success of the design methodology suggests that it can be universally applied to other enzymes, on its own or in combination with the other strategies based on redesign of the interactions in the protein core.


Assuntos
Enzimas/química , Humanos , Conformação Proteica , Engenharia de Proteínas , Propriedades de Superfície
14.
Protein Sci ; 17(7): 1285-90, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469176

RESUMO

The energetic contribution of complex salt bridges, in which one charged residue (anchor residue) forms salt bridges with two or more residues simultaneously, has been suggested to have importance for protein stability. Detailed analysis of the net energetics of complex salt bridge formation using double- and triple-mutant cycle analysis revealed conflicting results. In two cases, it was shown that complex salt bridge formation is cooperative, i.e., the net strength of the complex salt bridge is more than the sum of the energies of individual pairs. In one case, it was reported that complex salt bridge formation is anti-cooperative. To resolve these different findings, we performed analysis of the geometries of salt bridges in a representative set of structures from the PDB and found that over 87% of all complex salt bridges anchored by Arg/Lys have a geometry such that the angle formed by their Calpha atoms, Theta, is <90 degrees . This preferred geometry is observed in the two reported instances when the energetics of complex salt bridge formation is cooperative, while in the reported anti-cooperative complex salt bridge, Theta is close to 160 degrees . Based on these observations, we hypothesized that complex salt bridges are cooperative for Theta < 90 degrees and anti-cooperative for 90 degrees < Theta < 180 degrees . To provide a further experimental test for this hypothesis, we engineered a complex salt bridge with Theta = 150 degrees into a model protein, the activation domain of human procarboxypeptidase A2 (ADA2h). Experimentally derived stabilities of the ADA2h variants allowed us to show that the complex salt bridge in ADA2h is anti-cooperative.


Assuntos
Proteínas/química , Sais/química , Dicroísmo Circular , Cinética , Modelos Moleculares , Proteínas/genética , Proteínas/isolamento & purificação , Espectrofotometria Ultravioleta , Termodinâmica
15.
Arch Biochem Biophys ; 472(1): 51-7, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18294448

RESUMO

Our earlier studies have shown that the Vibrio harveyi flavin reductase FRP undergoes a monomer-dimer equilibrium, and luciferase forms a functional complex with the FRP monomer but not significantly with the dimer. This work is aimed at further investigating the nature and regulation of FRP subunit interactions by computation and site-directed mutagenesis approaches. In silico mutations of a number of residues were performed, and energetic analyses led us to target residue E99, which interacts directly with R113 and R225 from the second subunit of the FRP homodimer, for detailed investigation. E99 was found non-essential to the binding of either the FMN cofactor or the substrates. However, in comparison with the native enzyme, the E99K variant was shown to have an enhanced subunit dissociation as evident from a 44-fold higher K(d) for the monomer-dimer equilibrium. The critical role of E99 in the formation of the FRP dimer has thus been demonstrated.


Assuntos
FMN Redutase/química , FMN Redutase/ultraestrutura , Modelos Químicos , Modelos Moleculares , Vibrio/enzimologia , Substituição de Aminoácidos , Simulação por Computador , Dimerização , Ativação Enzimática , Mutagênese Sítio-Dirigida , Conformação Proteica , Relação Estrutura-Atividade
16.
J Mol Biol ; 366(3): 842-56, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17188709

RESUMO

Charge-charge interactions on the surface of native proteins are important for protein stability and can be computationally redesigned in a rational way to modulate protein stability. Such computational effort led to an engineered protein, CspB-TB that has the same core as the mesophilic cold shock protein CspB-Bs from Bacillus subtilis, but optimized distribution of charge-charge interactions on the surface. The CspB-TB protein shows an increase in the transition temperature by 20 degrees C relative to the unfolding temperature of CspB-Bs. The CspB-TB and CspB-Bs protein pair offers a unique opportunity to further explore the energetics of charge-charge interactions as the substitutions at the same sequence positions are done in largely similar structural but different electrostatic environments. In particular we addressed two questions. What is the contribution of charge-charge interactions in the unfolded state to the protein stability and how amino acid substitutions modulate the effect of increase in ionic strength on protein stability (i.e. protein halophilicity). To this end, we experimentally measured the stabilities of over 100 variants of CspB-TB and CspB-Bs proteins with substitutions at charged residues. We also performed computational modeling of these protein variants. Analysis of the experimental and computational data allowed us to conclude that the charge-charge interactions in the unfolded state of two model proteins CspB-Bs and CspB-TB are not very significant and computational models that are based only on the native state structure can adequately, i.e. qualitatively (stabilizing versus destabilizing) and semi-quantitatively (relative rank order), predict the effects of surface charge neutralization or reversal on protein stability. We also show that the effect of ionic strength on protein stability (protein halophilicity) appears to be mainly due to the screening of the long-range charge-charge interactions.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Concentração Osmolar , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Eletricidade Estática , Termodinâmica
17.
Proteins ; 64(2): 295-300, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16705642

RESUMO

The heat capacity change upon unfolding (deltaC(p)) is a thermodynamic parameter that defines the temperature dependence of the thermodynamic stability of proteins; however, physical basis of the heat capacity change is not completely understood. Although empirical surface area-based calculations can predict heat capacity changes reasonably well, accumulating evidence suggests that changes in hydration of those surfaces is not the only parameter contributing to the observed heat capacity changes upon unfolding. Because packing density in the protein interior is similar to that observed in organic crystals, we hypothesized that changes in protein dynamics resulting in increased rigidity of the protein structure might contribute to the observed heat capacity change upon unfolding. Using differential scanning calorimetry we characterized the thermodynamic behavior of a serine protease inhibitor eglin C and two eglin C variants with altered native state dynamics, as determined by NMR. We found no evidence of changes in deltaC(p) in either of the variants, suggesting that changes in rigidity do not contribute to the heat capacity change upon unfolding in this model system.


Assuntos
Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Sequência de Bases , Varredura Diferencial de Calorimetria , Temperatura Alta , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação , Desnaturação Proteica , Dobramento de Proteína , Temperatura , Termodinâmica
18.
Biochemistry ; 45(9): 2761-6, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16503630

RESUMO

Engineering proteins to withstand a broad range of conditions continues to be a coveted objective, holding the potential to advance biomedicine, industry, and our understanding of disease. One way of achieving this goal lies in elucidating the underlying interactions that define protein stability. It has been shown that the hydrophobic effect, hydrogen bonding, and packing interactions between residues in the protein interior are dominant factors that define protein stability. The role of surface residues in protein stability has received much less attention. It has been believed that surface residues are not important for protein stability particularly because their interactions with the solvent should be similar in the native and unfolded states. In the case of surface charged residues, it was sometimes argued that solvent exposure meant that the high dielectric of the solvent will further decrease the strength of the charge-charge interactions. In this paper, we challenge the notion that the surface charged residues are not important for protein stability. We computationally redesigned sequences of five different proteins to optimize the surface charge-charge interactions. All redesigned proteins exhibited a significant increase in stability relative to their parent proteins, as experimentally determined by circular dichroism spectroscopy and differential scanning calorimetry. These results suggest that surface charge-charge interactions are important for protein stability and that rational optimization of charge-charge interactions on the protein surface can be a viable strategy for enhancing protein stability.


Assuntos
Proteínas/química , Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/genética , Sequência de Aminoácidos , Carboxipeptidases A/química , Carboxipeptidases A/genética , Estabilidade Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/genética , Eletricidade Estática , Temperatura , Tenascina/química , Tenascina/genética , Termodinâmica , Ubiquitina/química , Ubiquitina/genética , Acilfosfatase
19.
Nat Chem Biol ; 2(3): 139-43, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16446709

RESUMO

The alpha-helix is a fundamental protein structural motif and is frequently terminated by a glycine residue. Explanations for the predominance of glycine at the C-cap terminal portions of alpha-helices have invoked uniquely favorable energetics of this residue in a left-handed conformation or enhanced solvation of the peptide backbone because of the absence of a side chain. Attempts to quantify the contributions of these two effects have been made previously, but the issue remains unresolved. Here we have used chemical protein synthesis to dissect the energetic basis of alpha-helix termination by comparing a series of ubiquitin variants containing an L-amino acid or the corresponding D-amino acid at the C-cap Gly35 position. D-Amino acids can adopt a left-handed conformation without energetic penalty, so the contributions of conformational strain and backbone solvation can thus be separated. Analysis of the thermodynamic data revealed that the preference for glycine at the C' position of a helix is predominantly a conformational effect.


Assuntos
Estrutura Secundária de Proteína , Proteínas , Termodinâmica , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas/síntese química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...