Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2690-2699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374878

RESUMO

Transcription factors (TFs) play a part in gene expression. TFs can form complex gene expression regulation system by combining with DNA. Thereby, identifying the binding regions has become an indispensable step for understanding the regulatory mechanism of gene expression. Due to the great achievements of applying deep learning (DL) to computer vision and language processing in recent years, many scholars are inspired to use these methods to predict TF binding sites (TFBSs), achieving extraordinary results. However, these methods mainly focus on whether DNA sequences include TFBSs. In this paper, we propose a fully convolutional network (FCN) coupled with refinement residual block (RRB) and global average pooling layer (GAPL), namely FCNARRB. Our model could classify binding sequences at nucleotide level by outputting dense label for input data. Experimental results on human ChIP-seq datasets show that the RRB and GAPL structures are very useful for improving model performance. Adding GAPL improves the performance by 9.32% and 7.61% in terms of IoU (Intersection of Union) and PRAUC (Area Under Curve of Precision and Recall), and adding RRB improves the performance by 7.40% and 4.64%, respectively. In addition, we find that conservation information can help locate TFBSs.

2.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3144-3153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34882561

RESUMO

Discovery of transcription factor binding sites (TFBSs) is of primary importance for understanding the underlying binding mechanic and gene regulation process. Growing evidence indicates that apart from the primary DNA sequences, DNA shape landscape has a significant influence on transcription factor binding preference. To effectively model the co-influence of sequence and shape features, we emphasize the importance of position information of sequence motif and shape pattern. In this paper, we propose a novel deep learning-based architecture, named hybridShape eDeepCNN, for TFBS prediction which integrates DNA sequence and shape information in a spatially aligned manner. Our model utilizes the power of the multi-layer convolutional neural network and constructs an independent subnetwork to adapt for the distinct data distribution of heterogeneous features. Besides, we explore the usage of continuous embedding vectors as the representation of DNA sequences. Based on the experiments on 20 in-vitro datasets derived from universal protein binding microarrays (uPBMs), we demonstrate the superiority of our proposed method and validate the underlying design logic.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Ligação Proteica , Fatores de Transcrição/metabolismo , Sítios de Ligação/genética , Proteínas de Ligação a DNA/metabolismo , DNA/química
3.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3663-3672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34699364

RESUMO

The abuse of traditional antibiotics has led to an increase in the resistance of bacteria and viruses. Similar to the function of antibacterial peptides, bacteriocins are more common as a kind of peptides produced by bacteria that have bactericidal or bacterial effects. More importantly, the marine environment is one of the most abundant resources for extracting marine microbial bacteriocins (MMBs). Identifying bacteriocins from marine microorganisms is a common goal for the development of new drugs. Effective use of MMBs will greatly alleviate the current antibiotic abuse problem. In this work, deep learning is used to identify meaningful MMBs. We propose a random multi-scale convolutional neural network method. In the scale setting, we set a random model to update the scale value randomly. The scale selection method can reduce the contingency caused by artificial setting under certain conditions, thereby making the method more extensive. The results show that the classification performance of the proposed method is better than the state-of-the-art classification methods. In addition, some potential MMBs are predicted, and some different sequence analyses are performed on these candidates. It is worth mentioning that after sequence analysis, the HNH endonucleases of different marine bacteria are considered as potential bacteriocins.


Assuntos
Bactérias , Bacteriocinas , Descoberta de Drogas , Redes Neurais de Computação , Antibacterianos/química , Bactérias/química , Bacteriocinas/química , Bacteriocinas/classificação , Peptídeos , Descoberta de Drogas/métodos , Organismos Aquáticos/química , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...