Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eksp Klin Farmakol ; 79(1): 15-9, 2016.
Artigo em Russo | MEDLINE | ID: mdl-27159952

RESUMO

Taking into account the genetic heterogeneity of hyperlipidemias, polymorphic genes involved in the regulation of lipid metabolism may explain differences in the efficacy of hypolipidemic therapy. In the present prospective and randomized study, we have investigated the efficacy of rosuvastatin (10 mg/day) in the therapy of atherogenic hyperlipidemias in a group of 62 patients with coronary heart disease (CHD), depending on the genotype of lipoprotein lipase (LPL). The pharmacological correction was carried out during one year under control of lipid metabolism parameters (total cholesterol, LDL-C, HDL-C, HDL-unrelated cholesterol, triglycerides, atherogenic index) at the baseline and on 4th, 8th, 24th and 48th week. The HindIII polymorphism (+495T > G, rs320) of the LPL gene was genotyped in all patients studied through a real-time PCR TaqMan assay. Rosuvastatin produced a significant hypolipidemic effect with respect to all investigated lipid metabolism parameters for 24 weeks of treatment. Changes in the parameters of lipid metabolism upon rosuvastatin treatment differed in patients with genotype +495GG as compared to the rest LPL genotypes. In comparison to the +495TT and TG genotypes, the genotype +495GG showed a greater reduction in total cholesterol on 8th week, and in LDL-C, HDL-unrelated cholesterol, and atherogenic index on the 48th week of rosuvastatin therapy (p <0.01). It can be suggested that the pronounced hypolipidemic effect of rosuvastatin in homozygotes +495GG of the LPL gene is associated with modulation of the LPL activity, as it has been previously reported for other statin drugs.


Assuntos
Doença das Coronárias , Hiperlipidemias , Lipase Lipoproteica/genética , Polimorfismo de Fragmento de Restrição , Rosuvastatina Cálcica/administração & dosagem , Adulto , HDL-Colesterol/sangue , HDL-Colesterol/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/enzimologia , Doença das Coronárias/genética , Humanos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/epidemiologia , Hiperlipidemias/genética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
2.
Adv Space Res ; 31(7): 1775-80, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14503517

RESUMO

To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of advantages over the cultivation on neutral substrates, which require continual replenishment of the plant nutrient solution from the system's store to complement the macro- and micro-elements. Yet, a number of problems arise, including those related to the controlling of the production activity of the plants by the intensity of photosynthetically active radiation. It is essential to understand why the intensity of production processes is limited at higher irradiation levels and to overcome the factors responsible for this, so that the soil-like substrate could have an even better chance in the competition for the best plant cultivation technology to be used in biological life support systems.


Assuntos
Sistemas Ecológicos Fechados , Luz , Fotossíntese , Raphanus/efeitos da radiação , Microbiologia do Solo , Triticum/efeitos da radiação , Biomassa , Dióxido de Carbono/metabolismo , Contagem de Colônia Microbiana , Meios de Cultura , Enterobacteriaceae , Sistemas de Manutenção da Vida , Transpiração Vegetal , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...