Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1259-1272, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189745

RESUMO

The folding of newly synthesized polypeptides requires the coordinated action of molecular chaperones. Prokaryotic cells and the chloroplasts of plant cells possess the ribosome-associated chaperone trigger factor, which binds nascent polypeptides at their exit stage from the ribosomal tunnel. The structure of bacterial trigger factor has been well characterized and it has a dragon-shaped conformation, with flexible domains responsible for ribosome binding, peptidyl-prolyl cis-trans isomerization (PPIase) activity and substrate protein binding. Chloroplast trigger-factor sequences have diversified from those of their bacterial orthologs and their molecular mechanism in plant organelles has been little investigated to date. Here, the crystal structure of the plastidic trigger factor from the green alga Chlamydomonas reinhardtii is presented at 2.6 Šresolution. Due to the high intramolecular flexibility of the protein, diffraction to this resolution was only achieved using a protein that lacked the N-terminal ribosome-binding domain. The eukaryotic trigger factor from C. reinhardtii exhibits a comparable dragon-shaped conformation to its bacterial counterpart. However, the C-terminal chaperone domain displays distinct charge distributions, with altered positioning of the helical arms and a specifically altered charge distribution along the surface responsible for substrate binding. While the PPIase domain shows a highly conserved structure compared with other PPIases, its rather weak activity and an unusual orientation towards the C-terminal domain points to specific adaptations of eukaryotic trigger factor for function in chloroplasts.


Assuntos
Proteínas de Escherichia coli , Peptidilprolil Isomerase , Cloroplastos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Chaperonas Moleculares/química , Peptídeos/metabolismo , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Dobramento de Proteína
2.
Cell ; 184(14): 3643-3659.e23, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166613

RESUMO

Vesicle-inducing protein in plastids 1 (VIPP1) is essential for the biogenesis and maintenance of thylakoid membranes, which transform light into life. However, it is unknown how VIPP1 performs its vital membrane-remodeling functions. Here, we use cryo-electron microscopy to determine structures of cyanobacterial VIPP1 rings, revealing how VIPP1 monomers flex and interweave to form basket-like assemblies of different symmetries. Three VIPP1 monomers together coordinate a non-canonical nucleotide binding pocket on one end of the ring. Inside the ring's lumen, amphipathic helices from each monomer align to form large hydrophobic columns, enabling VIPP1 to bind and curve membranes. In vivo mutations in these hydrophobic surfaces cause extreme thylakoid swelling under high light, indicating an essential role of VIPP1 lipid binding in resisting stress-induced damage. Using cryo-correlative light and electron microscopy (cryo-CLEM), we observe oligomeric VIPP1 coats encapsulating membrane tubules within the Chlamydomonas chloroplast. Our work provides a structural foundation for understanding how VIPP1 directs thylakoid biogenesis and maintenance.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydomonas/metabolismo , Multimerização Proteica , Synechocystis/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Membrana Celular/metabolismo , Chlamydomonas/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Fluorescência Verde/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Luz , Lipídeos/química , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estresse Fisiológico/efeitos da radiação , Synechocystis/ultraestrutura , Tilacoides/ultraestrutura
3.
Plant Physiol ; 179(3): 1093-1110, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30651302

RESUMO

Biochemical processes in chloroplasts are important for virtually all life forms. Tight regulation of protein homeostasis and the coordinated assembly of protein complexes, composed of both imported and locally synthesized subunits, are vital to plastid functionality. Protein biogenesis requires the action of cotranslationally acting molecular chaperones. One such chaperone is trigger factor (TF), which is known to cotranslationally bind most newly synthesized proteins in bacteria, thereby assisting their correct folding and maturation. However, how these processes are regulated in chloroplasts remains poorly understood. We report here functional investigation of chloroplast-localized TF (TIG1) in the green alga (Chlamydomonas reinhardtii) and the vascular land plant Arabidopsis (Arabidopsis thaliana). We show that chloroplastic TIG1 evolved as a specialized chaperone. Unlike other plastidic chaperones that are functionally interchangeable with their prokaryotic counterpart, TIG1 was not able to complement the broadly acting ortholog in Escherichia coli. Whereas general chaperone properties such as the prevention of aggregates or substrate recognition seems to be conserved between bacterial and plastidic TFs, plant TIG1s differed by associating with only a relatively small population of translating ribosomes. Furthermore, a reduction of plastidic TIG1 levels leads to deregulated protein biogenesis at the expense of increased translation, thereby disrupting the chloroplast energy household. This suggests a central role of TIG1 in protein biogenesis in the chloroplast.


Assuntos
Arabidopsis/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Chlamydomonas reinhardtii/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas
4.
Sci Rep ; 7(1): 10680, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878399

RESUMO

A considerably small fraction of approximately 60-100 proteins of all chloroplast proteins are encoded by the plastid genome. Many of these proteins are major subunits of complexes with central functions within plastids. In comparison with other subcellular compartments and bacteria, many steps of chloroplast protein biogenesis are not well understood. We report here on the first study of chloroplast-localised trigger factor. In bacteria, this molecular chaperone is known to associate with translating ribosomes to facilitate the folding of newly synthesized proteins. Chloroplast trigger factors of the unicellular green algae Chlamydomonas reinhardtii and the vascular land plant Arabidopsis thaliana were characterized by biophysical and structural methods and compared to the Escherichia coli isoform. We show that chloroplast trigger factor is mainly monomeric and displays only moderate stability against thermal unfolding even under mild heat-stress conditions. The global shape and conformation of these proteins were determined in solution by small-angle X-ray scattering and subsequent ab initio modelling. As observed for bacteria, plastidic trigger factors have a dragon-like structure, albeit with slightly altered domain arrangement and flexibility. This structural conservation despite low amino acid sequence homology illustrates a remarkable evolutionary robustness of chaperone conformations across various kingdoms of life.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eucariotos/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cloroplastos/genética , Cloroplastos/metabolismo , Eucariotos/classificação , Evolução Molecular , Modelos Moleculares , Conformação Molecular , Filogenia , Multimerização Proteica , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...