Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biotechnol Equip ; 28(2): 266-270, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26740756

RESUMO

New TiO2-based hybrid materials composed of an organic polymer, cellulose acetate butyrate and copolymer of acrylonitrile acrylamide (AN + AA) were prepared. The effectiveness of immobilization of microbial strain Arthrobacter oxydans 1388 on the newly synthesized hybrid membranes was investigated by biochemical methods. The obtained results revealed that the matrix more suitable for biofilm formation was composed of organic polymers without a metal component in the membrane composition. The influence of Ni2+ on urease activity produced by biofilms was investigated. The experimental results demonstrated that 2 mg L-1 concentration of Ni2+ in the nutrient medium is more appropriate for biofilm proliferation.

2.
Ultrasonics ; 52(5): 622-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22325847

RESUMO

In many industrial processes where online control is necessary such as in the food industry, the real time monitoring of visco-elastic properties is essential to ensure the quantity of production. Acoustic methods have shown that reliable properties could be obtained from measurements of velocity and attenuation. This paper proposes a simple, real time ultrasound method for monitoring linear medium properties (phase velocity and attenuation) that vary in time. The method is based on a pulse echo measurement and is self-calibrated. Results on a silica gel are reported and the importance of taking into account the changes of the mechanical loading on the front face of the transducer will be shown. This is done through a modification of the emission and reception transfer parameters. The simultaneous measurement of the input and output currents and voltages enables these parameters to be calculated during the reaction. The variations of the transfer parameters are in the order of 6% and predominate other effects. The evolution of the ultrasonic longitudinal wave phase velocity and attenuation as a function of time allows the characteristic times of the chemical reaction to be determined. The results are well correlated with the gelation time measured by rheological method at low frequency.


Assuntos
Géis/química , Reologia/métodos , Dióxido de Silício/química , Ultrassom , Algoritmos , Calibragem , Elasticidade , Transição de Fase , Controle de Qualidade , Transdutores , Vibração , Viscosidade
3.
Ultrasonics ; 42(1-9): 507-10, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047337

RESUMO

Gelation is a complex reaction that transforms a liquid medium into a solid one: the gel. In gel state, some gel materials (DMAP) have the singular property to ring in an audible frequency range when a pulse is applied. Before the gelation point, there is no transmission of slow waves observed; after the gelation point, the speed of sound in the gel rapidly increases from 0.1 to 10 m/s. The time evolution of the speed of sound can be measured, in frequency domain, by following the frequency spacing of the resonance peaks from the Synchronous Detection (SD) measurement method. Unfortunately, due to a constant frequency sampling rate, the relative error for low speeds (0.1 m/s) is 100%. In order to maintain a low constant relative error, in the whole speed time evolution range, Chirp-Z Transform (CZT) is used. This operation transforms a time variant signal to a time invariant one using only a time dependant stretching factor (S). In the frequency domain, the CZT enables us to stretch each collected spectrum from time signals. The blind identification of the S factor gives us the complete time evolution law of the speed of sound. Moreover, this method proves that the frequency bandwidth follows the same time law. These results point out that the minimum wavelength stays constant and that it only depends on the gel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...